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ABSTRACT. We prove that proper coloring distinguishes between
block-factors and finitely dependent stationary processes. A sto-
chastic process is finitely dependent if variables at sufficiently well-
separated locations are independent; it is a block-factor if it can
be expressed as a finite-range function of independent variables.
The problem of finding non-block-factor finitely dependent pro-
cesses dates back to 1965. The first published example appeared
in 1989, and we provide arguably the first natural examples. More
precisely, Schramm proved in 2008 that no stationary 1-dependent
3-coloring of the integers exists, and conjectured that no station-
ary k-dependent g-coloring exists for any k and ¢q. We disprove
this by constructing a 1-dependent 4-coloring and a 2-dependent
3-coloring, thus resolving the question for all £ and g.

Our construction is canonical and natural, yet very different
from all previous schemes. In its pure form it yields precisely the
two colorings mentioned above, and no others. The processes pro-
vide unexpected connections between extremal cases of the Lovasz
local lemma and descent and peak sets of random permutations.
Neither coloring can be expressed as a block-factor, nor as a func-
tion of a finite-state Markov chain; indeed, no stationary finitely
dependent coloring can be so expressed. We deduce extensions
involving d dimensions and shifts of finite type; in fact, any non-
degenerate shift of finite type also distinguishes between block-
factors and finitely dependent processes.

1. INTRODUCTION

Central to probability and ergodic theory is the notion of mixing in
various forms. A stochastic process is a family of random variables
indexed by a metric space, and mixing means that variables at distant
locations are approximately independent. The strongest and simplest
mixing condition is finite dependence, which states that subsets of vari-
ables are independent provided they are at least some fixed distance
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apart. Despite the simplicity of the definition, finite dependence turns
out to be rather subtle. Finitely dependent processes arise in the con-
text of classical limit theorems [17, [18, 22, 25], renormalization of sta-
tistical physics models [31, 139], and the Lovéasz local lemma [4, 12], a
fundamental tool of probabilistic combinatorics.

A key problem, originating from work of Ibragimov and Linnik in
1965 [21, 22], has been to understand the relationship between finitely
dependent processes and block-factors. A block-factor is a process that
can be expressed as a finite-range function of an underlying family of
independent random variables. It is clear that a block-factor is finitely
dependent; it is natural to ask about the converse implication.

This question retains its interest and subtlety even in the simplest
setting of stochastic processes indexed by the integer line. (We return
to more general settings later.) We say that a stochastic process X =
(Xi)iez is k-dependent if the random sequences (..., X; o, X; 1) and
(Xisks Xitkt1,-..) are independent of each other, for each ¢ € Z; if X
is k-dependent for some integer k then it is finitely dependent. A
process X is stationary if (X;);cz and (X;11)iez are equal in law. A
process X is an r-block-factor (of an i.i.d. process) if for some i.i.d.
(U;)iez and some measurable f we have X; = f(Ui1,Uiio, ..., Uisy)
for each i. (Here the random variables U; need not be discrete; without
loss of generality we can take them to be uniform on [0, 1].)

An r-block-factor is clearly stationary and (r — 1)-dependent. Ibrag-
imov and Linnik [21, 22] proved in 1965 that the converse implica-
tion holds for Gaussian processes, and claimed without proof that it is
false in general. This question was explicitly stated as open by Gotze
and Hipp [15] and Janson [24]. It was not resolved until 1989, when
Aaronson, Gilat, Keane and de Valk [2] gave a family of 1-dependent
processes that are not 2-block-factors. This construction is indirect
and algebraic, and the authors asked for more natural examples. This
question and the surrounding issues have been taken up by a number
of authors [1, [7-10, 14, 116, [18, 23, 25, 131, 134, 135, 140], and various fur-
ther examples have been constructed. Highlights include an explicit
1-dependent (5-state) Markov chain that is not a 2-block factor [1], a
(hidden-Markov) 1-dependent process that is not an r-block-factor for
any r [8], and a “perturbable” example showing that 2-block-factors
are not dense in the set of 1-dependent Markov chains [34].

The constructions mentioned above are intricate, subtle and counter-
intuitive, but the resulting examples have the appearance of technical
ones specifically constructed for the purpose. For instance, Borodin,
Diaconis and Fulton 6] remarked in 2010: ‘it appears that most “nat-
ural” one-dependent processes are two-block factors’. This issue has
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practical implications: several authors |15, 17, 24] have been forced to
assume a block-factor representation as an additional assumption in
the study of finitely dependent processes: if natural finitely dependent
processes are block factors, then there is little to be lost by such an
assumption.

In this article we provide arguably the first genuinely natural finitely
dependent stationary process that is not a block-factor. Moreover, we
establish something much stronger, which runs entirely counter to the
above ideas about natural processes. Suppose that we impose any fixed
system of local constraints on a stochastic process. (Formally, we re-
quire the process to belong almost surely to a shift of finite type.)
Provided the constraints satisfy certain simple non-degeneracy con-
ditions, we show that they can be satisfied by a stationary finitely
dependent process, but not by any block-factor. The latter negative
statement follows from ideas of Ramsey theory — our main contribution
is the former positive statement. Underlying this is a remarkable new
stochastic process that is natural and canonical, yet apparently quite
different from all previously studied classes of stochastic processes. It
has many surprising properties that hint at a deeper theory. In par-
ticular, certain marginal projections provide unexpected links between
known processes involving descent and peak sets of random permuta-
tions, Dyck words, and extremal cases of the Lovész local lemma.

Proper coloring is a canonical choice of local constraint, which turns
out to be the key to the general case. We call a stochastic process
X = (X;)iez a g-coloring (of Z) if each X; takes values in {1,...,q¢},
and almost surely we have X; # X;;; for all ¢ € Z. For which k
and ¢ does there exist a stationary k-dependent ¢-coloring of Z? This
question arose from discussions between Itai Benjamini, Alexander Hol-
royd and Benjamin Weiss in early 2008. In addition to its implications
in relation to block factors, it is a formulation of the very natural
question: do local constraints demand global organization? It can
also be seen a question about spontaneous symmetry-breaking. Oded
Schramm proved a negative answer in the first non-trivial case: there
is no stationary l-dependent 3-coloring. The proof appears in [20];
we will give different proof, which provides some further information.
Schramm conjectured that no stationary k-dependent g-coloring exists
for any k and q. We disprove this.

Theorem 1. There exist a stationary 1-dependent 4-coloring of Z, and
a stationary 2-dependent 3-coloring of Z.

On the other hand, we have the following.

Proposition 2. No r-block-factor q-coloring exists, for any r and q.
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Theorem [1 and Proposition B together provide perhaps the cleanest
answer one could hope for to the question raised by Ibragimov and
Linnik:

Coloring can be done by a stationary 1-dependent process, but not by a
block-factor.

Moreover, since it is easily seen that no stationary finitely depen-
dent 2-coloring exists, Schramm’s impossibility result and Theorem 1
together provide a complete answer to the above question about k-
dependent g-colorings. In fact, there is a canonical construction that
gives precisely the two required cases (k, q) = (1,4), (2, 3) in Theorem EL
and no others. To our knowledge, Theorem E[ also provides the first
stationary finitely dependent non-block-factor that is symmetric un-
der permutations of the symbols, and the first stationary 1-dependent
process that is not hidden-Markov. (See below for details.)

We do not claim Proposition M as new, although it does not appear
to be particularly well known in this form. An essentially equivalent
result appears in [37] (in a stronger, quantitative form, stated in rather
different terms motivated by applications in distributed computing, and
building on_earlier work in [32]). Further extensions and applications
appear in [3, 20]. For the reader’s convenience we provide a simple
proof of Proposition [2.

Given the prominence of Markov chains in the literature on finitely
dependent processes, it is natural to ask whether our colorings are
Markov. They are not, and much more can be said. We call a stationary
process X hidden-Markov if there exists a stationary Markov chain
M = (M;);ez on a finite state space, and a deterministic function f,
such that X; = f(M;) for all i. (In contrast with the definition of block-
factors, here finiteness of the state space is important: if we were to
allow an uncountable state space then any stationary process X could
be represented this way, by taking M; = (..., X;_1,X;).) Note that
hidden-Markov processes include m-step Markov processes, as well as
Gibbs measures with local interactions. The following is a previously
unpublished result of Schramm, of which we present a proof.

Proposition 3 (Schramm). No hidden-Markov finitely dependent q-
coloring exists, for any q.

In particular, our 4-coloring provides a partial answer to a question of
de Valk [10, Problem 8], who asked whether every 1-dependent process
is a function of a Markov chain: the answer is no for finite-state chains.
(The case of countable state spaces remains open).

As mentioned earlier, the colorings of Theorem [l have many re-
markable properties, which hint at some deeper structure. We strongly
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believe that the stationary 1-dependent 4-coloring is unique. The next
result gives some of these properties, and also provides a small step
towards uniqueness. Let 1[-] denote an indicator function.

Theorem 4. The stationary 1-dependent 4-coloring X and 2-dependent
3-coloring Y of Theorem [ can be chosen to have the following addi-
tional properties.

(i) The processes are reversible, and symmetric under permutations
of the colors, i.e. X is equal in law to (X_;)iez, and to (0(X;))iez
for any o € Sy, and similarly for' Y and o € Ss.

(ii) The process (1[X; = 1])icz is equal in law to (1[B; > Bii1))iez,
where (B;)icz are i.i.d. taking values 0,1 with equal probabilities.

(iii) The process (1[X; € {1,2}])icz is equal in law to (L[U; > U;i1))icz,
where (U;)iez are i.i.d. uniform on [0, 1].

(iv) The process (1[Y; = 1))iez is equal in law to (1[U;—1<U;>Ui11])icz,
where (U;)iez are i.i.d. uniform on [0, 1].

(v) The law of (Y1, ...,Y,) is the conditional law of (X1, ..., X,) given
that X; # 4 fori=1,...,n.

Every stationary 1-dependent 4-coloring X satisfies (ii).

The processes in (iifa(iv) above are evidently block-factors, notwith-
standing Proposition [2. Many of these properties are mysterious. It
is not clear why conditioning a 1-dependent 4-coloring to have no 4’s
should be expected to give a 2-dependent process, as in (v). We have
no simple explanation for the striking similarity between (iii) and (iv)
(even bearing in mind (v)). It appears difficult to think of any processes
satisfying the properties above, or even certain subsets of them. For
example, we know of no other ergodic process X that satisfies (i) and
(ii), nor that satisfies the analogue of (iii) for every 2-element subset of
{1,2,3,4}. It appears plausible that some such sets of properties may
uniquely characterize the processes.

The processes in (ii)—(iv) have been studied extensively in other set-
tings; (ii) is the unique extremal case of the Lovész local lemma (see
[41,142] and the discussion below), and (iii) and (iv) correspond to the
descent sets and peak sets of random permutations (see e.g. [5] and
references therein). The colorings X and Y can be seen as couplings
of multiple copies of these processes (with additional properties).

We will prove Theorem [l by giving expressions for cylinder probabil-
ities (i.e. for the probability that (Xi,. .., X,,) takes any given value) in
terms of a certain combinatorial structure. The expressions are simple
but mysterious, and seem a priori very hard to guess. In the case of the
4-coloring, we will prove that the expression is equal to a very different
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(and more complicated) expression (an alternating sum of numbers of
linear extensions of certain posets), which is useful for deducing certain
properties including Theorem H(iii) above. We in fact started with the
more complicated expression (which was guessed by considering the
constraints imposed on a 4-coloring by 1-dependence), but were un-
able to prove its nonnegativity directly. We were led to the simple
expression by searching for recursions satisfied by the complicated one.

We now consider generalizations to higher dimensions, and to general
systems of local constraints (as mentioned earlier). Firstly, let G =
(V, E) be a graph. A stochastic process X = (X,),ev indexed by the
vertices is called a g-coloring if each X, takes values in {1,... ¢}
and almost surely X, # X, whenever u and v are neighbors. It is
k-dependent if its restrictions to two subsets of V' are independent
whenever the subsets are at graph-distance greater than k from each
other. The hypercubic lattice is the graph with vertex set Z¢ and an
edge between u and v whenever ||u — v||; = 1; the graph itself is also
denoted Z?. A process on Z¢ is stationary if it is invariant in law
under all translations of Z.

Corollary 5. Let d > 2. There exist integers ¢ = q(d) and k = k(d)
such that:

(i) there exists a stationary 1-dependent q-coloring of Z4;
(i) there exists a stationary k-dependent 4-coloring of Z.2.

No stationary k-dependent g-coloring of Z?¢ was previously known
to exist for any k,q,d. The proof of Corollary H yields explicit upper
bounds on ¢(d) and k(d), but we do not expect them to be close to
optimal. In particular we can take ¢(d) = 4% in (i). (See Proposition [1
below for some lower bounds.) Both assertions are consequences of
Theorem [I; (i) is straightforward to deduce, while (i) uses results of
Holroyd, Schramm and Wilson [20] that were developed for the study
of finitary factor colorings. While the colorings of Corollary H are sta-
tionary under translations, we do not know how to make them invariant
under all isomeries of Z%. By another result in [20], the 4 colors in (ii)
cannot be reduced to 3 for any d > 2.

To describe our second extension we generalize from proper coloring
to arbitrary local constraints. Write [¢] := {1,...,¢}. A shift of finite
type on Z is a (deterministic) set of sequences S C [¢]% characterized
by an integer m and a set W C [¢]™ of allowed local patterns as follows:

S=5(gmW):={z€lg”: (@is1,...,T4m) € WVieZ}

For w € W, let T'(w) be the set of times at which the pattern w can
recur, i.e. the set of t > 1 for which there exists x € S with (z1,...,x,,)
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and (441, ..., Tim) both equal to w. We call the shift of finite type
non-lattice if there exists w € W for which T'(w) has greatest common
divisor 1. For example, the set of all deterministic proper g-colorings
of Z is a shift of finite type, and is non-lattice if and only if ¢ > 3. The
following is again a consequence of Theorem [1 together with results
from [20].

Corollary 6. Let S be a non-lattice shift of finite type on Z. There ex-
ists an integer k (depending on S) and a stationary k-dependent process
X such that the random sequence X belongs to S almost surely.

The following is a straightforward consequence of Proposition E,
proved in [20]. Let S be a shift of finite type on Z that does not con-
tain any constant sequence. Then there is no block-factor that belongs
a.s. to S. (In fact, under the non-lattice condition, it is shown in [20]
that there is a finitary factor of an i.i.d. process, with tower function
decay of its coding radius, that belongs a.s. to S, and that this decay
rate cannot be improved). Combining this with Corollary [ provides,
as promised, an even more striking answer to the Ibragimov-Linnik
question:

Any non-lattice shift of finite type on Z that contains no constant se-
quence serves to distinguish between block-factors and stationary finitely
dependent processes.

Returning to coloring, for any graph G and any k and g one can
ask whether there exists a k-dependent ¢-coloring that is invariant in
law under some given group of automorphisms. The following concept
leads to negative answers in some cases. A hard-core process on G
is a process J = (J,)yev such that each J, takes values in {0, 1}, and
almost surely we do not have J, = J, = 1 for adjacent vertices u,v. If
X is a g-coloring of G then J, := 1[X, = a] defines a hard-core process
for any given color a € [¢]. If X is k-dependent then so is J. We define
the critical point

pn = pu(G) = sup
{p : 3 a 1-dependent hard-core process J with P(J, = 1) = p Vv}.

Intriguingly, it turns out that for each p < py, there is a unique 1-
dependent hard-core process with all one-vertex marginals P(.J, = 1)
equal to p. Moreover, py, has alternative interpretations involving com-
plex zeros of the partition function of the standard hard-core model
(or lattice gas) of statistical physics, and in terms of boundary cases of
the Lovész local lemma. See Section [d and [41], [42] for details.
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Suppose that there exists a 1-dependent g-coloring X of GG in which
the colors (X,),ev are identically distributed. (This last condition
holds in particular if the process is invariant in law under a transitive
group of automorphisms). Then the above remarks imply

1
1 qZ_v
() Pn

so upper bounds on py yield lower bounds on the number of colors
needed. We illustrate the method by proving the following.

Proposition 7. Suppose that there exists a 1-dependent q-coloring X
of G with (X,)vey identically distributed.

(i) For G = Z¢ we have ¢ > (d + 1) /d?, and moreover ¢ > 9 for
d=2, and ¢ > 12 for d = 3.
(ii) For G = Ta, the infinite A-reqular tree, ¢ > A% /(A —1)271,

We do not know the minimum number of colors needed for a sta-
tionary 1-dependent coloring of Z% for any d > 2. On the tree Th,
one may use Theorem [l to construct 1-dependent colorings that are
invariant in law under certain transitive groups of automorphisms, but
again we do not know the minimum number of colors, nor whether fully
automorphism-invariant versions exist.

It is a remarkable fact that the bound () is tight on Z: we have
pn(Z) = 1/4, yet there exists a stationary 1-dependent 4-coloring. In
other words, it is possible to couple 4 copies of the critical 1-dependent
hard-core process in such a way that their supports partition Z, while
the entire process retains stationarity and 1-dependence.

One can interpret k-dependent processes via the language of func-
tional analysis (see also [10]). The following is a consequence of Theo-
rem

Corollary 8. Let (k,q) = (1,4) or (2,3). There exists a real separable
Hilbert space U and a bounded linear operator R : U — U with the
following properties. The image R"U is one-dimensional for all n > k.
There is a decomposition U = Uy + - - - + U, into mutually orthogonal
closed linear subspaces, such that for each i, the image R U; is contained
in the closed linear span of {U; : j # i}.

So far as we know, Corollary |8 is new. Schramm conjectured in 2008
(motivated by colorings) that such U and R cannot exist for any k and ¢
(even with the U; merely linearly independent, and without the separa-
bility restriction). A space U satisfying the conditions of the corollary
cannot be finite-dimensional, and by Lidskii’s theorem (see e.g. |28,
Chapter 30]), R cannot be of trace class. A complex Hilbert space
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FiGURE 1. Construction of the process: random col-
ors arrive at random times. In this case the coloring
(Z1, ..., Zg) is rejected at time 4, because Z3 and Zg are
both red (color 3), and they arrive before the intervening
points Z, and Zs.

example has been suggested by Fedja Nazarov and Serguei Denissov
(personal communication).

We now give a complete probabilistic description of our two colorings
of Z, which is astonishingly simple. (We will prove that it works in the
next two sections.) See Figurelll. Let Z = (74, ..., Z,) be a sequence of
i.i.d. random variables taking values 1,2, ..., g with equal probabilities.
Let ¢ be an independent uniformly random permutation of 1,...,n,
which we interpret as meaning that the symbol Z; arrives at time (7).
Let E be the event that, for every time t = 1, ..., n, the subsequence of
Z formed by those symbols that arrived up to time ¢ (ordered as in the
original sequence Z) forms a proper coloring (i.e. no two consecutive
elements in the subsequence are equal). Then for ¢ = 4 or q = 3, the
conditional law of Z given E equals the law of (Xq,..., where X
is, respectively, the 4-coloring or the 3-coloring of Theoremﬁ]

We emphasize that the cases ¢ = 3,4 in the above description are
very special. For ¢ = 2 or ¢ > 5, the resulting process is not k-
dependent for any k.

In a follow-up article [30] by the current authors, we use a more
elaborate version of the construction above to obtain for all ¢ > 5 a
stationary 1-dependent g-coloring of Z that is symmetric under per-
mutations the colors (as in Theorem @( )). Besides these examples and
straightforward embellishments of them, no other stationary finitely
dependent colorings of Z are known.
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In another article [19] by one of the current authors, the above con-
struction is modified to obtain a probabilistic construction of the 4-
coloring on the whole of Z. (More precisely, the process is expressed
as a finitary factor of an i.i.d. process; however, the approach fails for
the 3-coloring). One complication is that, while the laws of colorings
(X1,...,X,) are consistent between different intervals (as required to
obtain an extension to Z), the accompanying random permutations
(after conditioning) are not consistent.

The article [20] deals with the closely related issue of coloring Z¢ by
a finitary factor of an i.i.d. process; that is, a deterministic function
that commutes with translations in which the color at the origin can
determined from the i.i.d. variables within some finite (but random and
perhaps unbounded) radius. Depending on the number of colors and
the dimension, it turns out that the optimal tail decay of this radius is
either a power law or a tower function.

The relationship between the 4-coloring and 3-coloring is puzzling.
Can they be coupled in a natural way (without conditioning)? Here
is one plausible approach that fails. If X is a 1-dependent 4-coloring
then we can obtain a 3-dependent 3-coloring Y as a 3-block-factor
of X by eliminating color 4: take Y; to be X; unless X; = 4, in
which case Y; := min({1,2,3} \ {Xi—1, Xs41}). It is natural to try
to get a 2-dependent 3-coloring as a 2-block-factor of X, but this
is impossible — this amounts to the fact that the Kautz graph with
vertices V' = {(a,b) € {1,2,3,4}*> : a # b} and (undirected) edges
E ={((a,b),(b,c)) : (a,b), (b,c) € V'} is not 3-colorable.

Coloring, finite dependence, and block-factors have applications in
computer science (see e.g. [32,137]). For example, colors may represent
update schedules or communication frequencies for machines in a net-
work; adjacent machines are not permitted to conflict with each other.
Finite dependence implies privacy or security benefits: an adversary
who gains knowledge of some colors learns nothing about the others,
except within some fixed distance. A block-factor (or, more generally,
a finitary factor [19,20]) has the interpretation that colors can be com-
puted by the machines in a distributed fashion, based on randomness
generated locally together with local communication.

The article is organized as follows. In Section B we introduce a
combinatorial structure on which our processes are based. In Sec-
tion [ we deduce Theorem [ and Theorem @(i,v). Sections 4 can
largely be read independently of each other. In Sections 4 and B we
give proofs of Propositions @and 3 respectively, the latter using the
Hilbert space interpretation that also gives Corollary . In Section
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we prove Theorem @(ii,iv) together with the stronger assertion that ev-
ery 1-dependent 4-coloring has the former property, and we give a new
proof of Schramm’s result that no 1-dependent 3-coloring exists. In
Section [1 we provide the alternative expression for the cylinder prob-
abilities, and deduce Theorem @(iii). Section I§ contains the proofs of
Corollaries [§ and , and in Section [d we discuss hard-core processes
and prove Proposition [d. We conclude the article with a list of open
problems.

2. BUILDINGS

In this section we introduce the combinatorial object on which our
construction is based. We deduce some striking properties, although
the real magic will happen when we interpret them probabilistically.

A word is a finite sequence x = (x1,%2,...,%,) € Z", which we
sometimes abbreviate to x125 - - - x,. The word x is a proper coloring
if x; # x;4q for all 1 < i < n. For a word z € Z™ and a symbol a € Z

we denote the concatenation as xa = (xy,...,x,,a), etc. We write
T =@ XTi_1Xi41 - - - T, for  with the ith symbol removed.
Let S,, be the symmetric group of all permutations of 1,...,n. Let

x € Z" be a word, and let o € S,, be a permutation. We interpret o
as meaning that the symbol z; arrives at time o(¢) (and in position 7).
Fort =1,...,n we define

xly = (xi 0 0(i) < 1),

the subsequence of symbols that arrived by time ¢ (ordered as in z,
not ordered by arrival times). So for example if ¢ = (2,3,1) then
2y = (21,23). We say that o is a proper building of z if z{, is a
proper coloring for each ¢ = 1,...,n. So the identity permutation is a
proper building of the word 121, but the permutation (2,3,1) is not.
Let B(z) denote the number of proper buildings of x. The following is
the key property.

Lemma 9. If x is a proper coloring of length n then
B(z) =Y B(&).
i=1

Proof. This follows on considering the last arrival o=(n). The permu-
tation o is a proper building of x with 0=!(n) =i if and only if 7; is a
proper building of ;. O

We deduce the following identities. Recall that [¢] := {1,...,¢}.
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Proposition 10. Let ¢ > 2 and x € [q]", where n > 0. We have

Z B(za) = [n(q —2) + ¢] B(z).
aglq]

Proposition 11. Let x € [¢|™ and y € [q|", where m,n > 0.
m—+mn+2
If g = = .
Fq =4 then > B(zay) 2( 1 )B(:c)B(y)
a€lq]
m+n+4
If ¢ = 3 then Z B(zaby) = 2( 2 )B(:L’)B(y).

a,b€[q]

The proofs of Propositions [1d and [11] are elementary, and are very
similar to each other. However, in another respect the two results are
very different: Proposition 11 says something special about ¢ = 3,4
that apparently has no simple analogue for other ¢q. For example, for
q # 4 the ratio of > . B(zay) to B(z)B(y) no longer depends only
on the lengths of x and y. Also see Proposition [1d at the end of this
section.

Corollary 12. Let ¢ > 2 and n > 1. The total number of proper
buildings of all words of length n is

S(g,n) == Y B(z)=

z€[q]" k

which equals 2", (n + 2)!/2, and (n + 1)!2" in the cases ¢ = 2,3,4
respectively.

—=

k(g —2)+2],

Il
—

Proof. This is immediate from Proposition [1d. (The last factor in the
product is (n — 1)(¢ —2) + ¢ = n(q — 2) + 2). O

Proof of Proposition [10. We use induction on n. The identity is im-
mediate when n = 0 (so that = is the empty word and B(z) = 1).
Suppose that n > 1 and that it holds for n — 1. We can assume that x
is a proper coloring, otherwise both sides are 0. By Lemma @,

(2) > B(za)= ) {Z B(Z:a) + B(:c)] .
a€lq]

aFxy -i=1

We now consider each of the terms on the right. For ¢ < n — 1 the
inductive hypothesis gives

Y B@a) = [(n—1)(¢—2) + q| B@),

aFTn
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while for the case i = n we have

> B(E@aa) + B(@x,) = [(n— 1)(q — 2) + q| B(Z).
aFTn

Since Tz, = x, and >, B(z) = (¢ — 1)B(z), the right side of (2)
therefore becomes
[(n=1)(¢=2)+q] > B@)+ (¢—2)B(a),

i=1
which by Lemma [d equals n(q —2) + ¢|B(x). O

Proof of Proposition m, case ¢ = 4. We use induction. When n = 0
the identity is precisely Proposition [1d with q = 4, and the case m = 0
follows by symmetry. Therefore, suppose that m,n > 1, and that the
identity holds for all  and y with lengths totalling less than m + n.
Assume that x and y are proper colorings, otherwise the identity holds
trivially.

We consider two cases (and the crucial consequence of the assump-
tion ¢ = 4 will be that they give identical results). First suppose
Tm = Y1, and without loss of generality suppose both are equal to 1.
Lemma |9 gives

3 Y Blaa) =Y [Z B(Eay) + Blay) + Y B(xa@-)] |

acl4] a#l bi=1 j=1

Considering the first of the three terms on the right, the inductive
hypothesis gives for each 1,

> B(Ziay) =2

<m+n+1
a#1l

m

)BGIBW)

Similar reasoning applies to the third term, while B(xy) = 0 since xy
is not a proper coloring. Therefore, using Lemma |9 again, the right
side of (B) equals

W 2" swsw 4 )B50).

m
which equals the right side of the claimed identity.

For the second case, suppose z,, # y1, and say z,, = 1 and y; = 2.
Then

65) Y Bleay) = [Z B(Eay) + Blay) + Y B<myfj>] .

a€l4] a=3,4"i=1 j=1

m+n+1
m—+1
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For i < m — 1 we have, similarly to the previous case,

> s =2(" ) s s

m
a=3,4

On the other hand, for i = m, the inductive hypothesis gives

Z B(Z,ay) + B(ry) ZB (Tmay)
a=3,4 a#2
m-+n+1 ~
_9 B(Z,)B(y).
("2 )G B0)
The last of the three terms on the right of (&) can be treated similarly,
and of course the middle term yields »_ _;, B(xy) = 2B(zy). (This
is the key point where ¢ = 4 is used — for general ¢ we would be left
with an additional term (¢ — 4)B(zy), which was not present in the
first case above.) Therefore the right side of (Bl equals (@), as in the
previous case. Il

Proof of Pmpositz’onlﬂ case ¢ = 3. The proof is similar to the ¢ = 4
case, and is again by induction. When m or n is 0, the result follows
by applying Proposition m (twice). Therefore suppose m,n > 1 and
that the result holds for all smaller m +n. Again we can assume x and
Y are proper.

By Lemma @,

(6) ) Bluaby) =

a,be|3]

Z [Z B(Z;aby) + B(zby) + B(zay) + Z B(:cab@»)}

TmFaFbFyL ~i=1 J=1

As in the previous proof, for i < m — 1 the inductive hypothesis gives

S Baby) =2 (m ot 3) B(G)B().

1
TmFAaFbFy1 m +

The ¢ = m term must be combined with the next term, B(zby), and
we again consider two cases.
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Firstly, suppose x,, = y1 = 1 (say). Then

Z B(z,aby) + Z B(xby)

1#£a£b#1 1#a#£b#£1
= > B(@naby) + > B(@nlby)
ab=23,32 b=2,3
N m4+n+3 ~
= 3 Blean) - (" ) BEw B

by the inductive hypothesis.
Secondly, suppose z,, =1 # 2 = y; (say). Then

Z B(z,aby) + Z B(xby)

1£a#b£2 1#£a#b#£2
= Z B(zaby) + B(Z,13y)
ab=21,23,31
~ 3 ~
= Y B(@naby) =2 (m T )B(xm)B(y).
a,be|3] m+1

The third and forth terms appearing on the right of (@) can be treated
symmetrically, so by Lemma |9 the entire sum becomes

m+n+3 m+n+3
2 B(x)B
(") () s,
which equals the required expression. 0

The following fact is not needed for our main results, but it will imply
that the g-color analogue of our processes is not finitely dependent for

q ¢ {3,4}.

Proposition 13. Let ¢ > 2 and n > 0. We have

(7) > [B(122) — B(la1)] = 2] [ [k(g - 2) - 2].

z€[g]™

Proof. We use x’s to denote unrestricted symbols, so B(a *™ b) :=
er[q]” B(axb), etc. Let n > 1. By Lemma |9,

Bl = 3 [B(x1>+23<1@1)+3(1x> .
z€[q)™: i=1
1z1 proper



16 HOLROYD AND LIGGETT

But, by symmetry,

> B(l)=) Blax"'1)=(¢—1)B(1+""2),

z€[q]™: a#1
1x1 proper

and the term B(1z) can be treated similarly. On the other hand,

> B(#@1)=(¢-2)B1x""1),

z€lq]™:
1x1 proper

since each proper coloring of the form 1%"~!1 arises from exactly ¢ — 2
proper colorings of the form 1 %™ 1 by deleting the (i + 1)st symbol —
the two neighboring colors must be distinct, so there are ¢ — 2 choices
for the symbol between them that is deleted.

Therefore,

B(1+"1)=n(q—2)B(1+"""1)+2(¢g—1)B(1+"12),
and a simlar argument gives
B(1+"2) = (n+2)(g—2)B(1+""12)+2B(1x""11).
Subtracting yields
B(1x"2)— B(1%"1) = (n(qg —2) — 2) [B(1+"'2) — B(1+"""1)],

and induction finishes the proof. O

3. THE COLORINGS

Proof of Theorem[1. Recall that B(z) denotes the number of proper
buildings of a word x. To construct the 4-coloring, we define

B(z) B(x)
P P : =
(®) (%) = Falw) := YX(4,n)  (n4+1)27
We claim that there is a stationary 1-dependent 4-coloring X with
cylinder probabilities given by

(9) P[(Xi+17---7Xi+n) :I} = P(z), i,n€Z, xel4"
Proposition 11 gives that for all words x and v,

(10) > P(zay) = P(z)P(y).

a€l4]

x € [4]".

Taking vy or x to be the empty word () gives respectively Zae[4 P(xa) =

P(z) and .y Play) = P(y), so (@) gives a consistent family of mea-
sures. We have P()) = 1, and of course we have P(z) > 0 for all
x. Thus by the Kolmogorov extension theorem (see e.g. [26, Theo-
rem 6.16]) there exists a process X satisfying (@), and (@) immediately
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shows that it is stationary. The process X is a 4-coloring since P(z) = 0
when z is not a proper coloring, and (I0)) gives that it is 1-dependent.

The construction of the stationary 2-dependent 3-coloring is essen-
tially identical. We take

B(x)  2B(z)

(11) B(@) =Sy = mrar

€ 3]

Consistency follows from Proposition @, and 2-dependence from
Proposition 11 [l

Proof of Theorem ( i,v). The symmetry and conditioning properties
are immediate from (§)),(II]), and the definition of proper buildings. O

Via Proposition m, the above proof in fact shows that for every g > 2
there is a symmetric, reversible, stationary g-coloring X given by

B(x)
Y(q,n)

It is immediate that this matches the description of the process via
conditioning given in the introduction. The event E that the random
permutation ¢ is a proper building of the random word Z has prob-
ability ¥(q,n)/(nlg"), which is (n +1)/2" for ¢ = 4 and ("}?)/3" for
q=3.

Here is an alternative description of this process that does not in-
volve conditioning, and that provides a practical and efficient method
for exact sampling. Start with a sequence of length 1 consisting of a
uniformly random element of [¢]. At each step, insert a new color, in
such a way that the sequence is always a proper coloring, as follows.
Given that the current sequence has length n — 1, choose one of the
n —2 locations between two consecutive elements each with probability
(g —2)/[n(q —2) + 2], or one of the 2 end locations each with proba-
bility (¢ —1)/[n(¢ —2) +2]. Then insert a color in the chosen location,
chosen uniformly from among those that will still result in a proper
coloring; there are ¢ — 2 choices at an internal location, or ¢ — 1 at an
end. It is easily seen that the resulting sequence after n — 1 such steps
has the same law as (Xi,...,X,). See [33,136] for a somewhat related
process.

Proposition [13 shows that for q ¢ {3,4} the process is not k-
dependent for any k. Indeed, the right side of (@) is positive for all
g > 5 and n > 0 (the product over k begins (¢—4)(2¢—6)(3¢—38) ---),
so the events X; = 1 and X; = 1 are strictly negatively correlated for
i # j when ¢ > 5. (The case ¢ = 2 is trivial).

P[(Xi+17 ooy Xign) = x] =
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4. BLOCK-FACTORS

Proof of Proposition [4. Let Ui, ...,U,y1 beii.d. random variables, and
let f: R” — [g] be a measurable function. We claim that for all v, ¢ > 1,

(12) P[f(Uy,...,U.) = f(Us,...,Ups1)] > 0.

Once this is proved, the required result follows immediately.

We prove ([I2)) by induction on r. For r = 1 it is immediate, since
f(Uy) and f(Us) are ii.d. Assume that it holds for » — 1 and all g.
Now for f: R" — [g] define

S(uyy .y Upy) = {a € [q] :P[f(ul,...,ur_l,Ur) = a] > O},

i.e., the set of values that f can take with positive probability given its
first » — 1 arguments. Since the function S takes at most 2¢ values, the
inductive hypothesis gives

P[S(U1,...,U—1) = S(Us, ..., U,)] > 0.

Moreover, since a.s. f(Uy,...,U.) € S(Uy,...,U._1), we can find de-
terministic A C [¢] and a € A such that

P[S(Ul,...,UT_1> = S(UQ,...,UT) = A, f(Ul,...,UT) = CL:| > 0.

Using the definition of S(Us, ..., U,), and the fact that U, is indepen-
dent of (Uy, ..., U,), the conditional probability that f(Us,...,U.41) =
a given the above event is positive. Thus,

]P)[f(Ul,...,UT) :f(UQ’...,Ur+1)] > 0. O

By replacing “> 07 with “> ¢” in the definition of S, the above proof
can be made quantitative, giving that the left side of (I2) is at least
1
—
92"
where there are r—1 exponentiation operations in the tower. The tower-
function form of this bound is sharp. See [20] for more information.

5. HILBERT SPACES AND HIDDEN-MARKOV PROCESSES

In this section we present the Hilbert space connection that leads to
Corollary , and from which we will also deduce Proposition d concern-
ing hidden-Markov processes.

Before doing this we give the much simpler proof of a special case
of PropositiongE: a stationary k-dependent g¢-coloring cannot itself be
a Markov chain. Indeed, let P = (P,4)qpc[q be its transition matrix.
Since X, is independent of X, for n > k, the conditional law of X,
given X, is simply the stationary distribution of the Markov chain,
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so in particular the conditional laws of Xj;,; and Xy o given X, are
identical, hence Pkl = P2 je PF1(1 — P) = 0. Therefore the
eigenvalues of P are precisely 0 and 1. However, since X is a proper
coloring we have P, , = 0 for all a, so P has trace 0, and its eigenvalues
(with multiplicities) sum to 0, a contradiction.

The proof of Propositionlg follows a broadly similar strategy, but
requires a more elaborate set-up, which also gives Corollary [§. Let
X = (X;)iez be a stationary process taking values in Q := [¢]%, with
law p. Let L? be the Hilbert space of real L?(p) functions on  (which
is separable by the Stone-Weierstrass and Lusin theorems). Let S :
1 — Q be the shift map given by S(x); = z;_1, and define the shift
operator T : L? — L* by (T'f)(x) = f(S~(z)). Let A be the space of
functions f € L? that depend only on x¢, x1, . . ., and let B be the space
of functions f € L? that depend only on ...,z_1,29. Thus TA C A
and TB D B. Let Py denote orthogonal projection in L? onto B, or
in probabilistic terms, Pg(f) =E(f | ..., X_1, Xo). Define

U .= PBA
(where the bar denotes closure), and define R to be the restriction
R = (PBT)‘U

Lemma 14. Let X = (X;);ez be a stationary process taking values in
[q)2. Define the Hilbert space U and the operator R as above.
(i) We have RU C U.
(i) If X is k-dependent, then R"U is the space of constant functions,
for alln > k.
(i) If X is a g-coloring, then U has an orthogonal decomposition

U=U& - &,

into closed linear subspaces such that RU; is orthogonal to U; for
each j.
Proof. We claim first that
(13) PgT P = PgT.
Indeed, let f € L? and g = Pgf. Then g — f is orthogonal to B. Since
T is an isometry, T'(g — f) is orthogonal to T'B. Since T'B O B, in
particular T'(g — f) is orthogonal to B. Thus, PgT(g — f) = 0. This
gives (I3)).

Now suppose that f € A and ¢ = Pgf. Then (I3) gives Rg =
RPgf = PgTPgf = PgTf € PgA. Thus R maps PgA into itself.
Since R is continuous, the same applies to the closure U, establish-
ing (i).
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A similar argument to the above gives R"U C PgTm™A for every
integer n > 1. Now if X is k-dependent then PgT™A is the space of
constants for all n > k, so we obtain (ii).

Finally, let V; denote the space of functions in L? that are supported
on the set of x € € such that xqg = j. Let

Uj = PB(V} N A)

Then U; C Vj, since PgV; C V; and Vj is closed. The spaces V; are
mutually orthogonal, therefore so are U;. Clearly, A is the direct sum
of the subspaces V; N A, and therefore PgA is spanned by the spaces
Pg(V; N A). Since these are mutually orthogonal, the same applies to
the closures. So U is the orthogonal direct sum of the spaces U;.

Now suppose that X is a g-coloring; then V; is orthogonal to T'V}.
To prove (iii) we must show that RU; and U; are orthogonal. Suppose
f.g € U;. Then (f,Rg) = {f,PsTa) = (Psf.Tg) = (/. Tg) = 0.
(Here we used that Pp is an orthogonal projection and therefore
self-adjoint, and that f,¢g € V; so f and T'g are orthogonal). This

proves (iii). O
Proof of Corollary [4. This is immediate by Theorem [] and Lemma[14.
O

To prove Proposition H we also need the following.

Lemma 15. If X is a hidden-Markov process then the Hilbert space U
defined above has finite dimension.

Proof. Let X be a function of a Markov chain M with state space S.
Consider the earlier space L? = L?(11) embedded in the possibly larger
space of L*(\) functions on the probability space of M, where X is
the law of M, and where we now interpret a function f € L?(u) as
the random variable f(X). Let C be the space of random variables in
L?(\) that depend only on ..., M_y, My, and let Po denote orthogonal
projection onto C. Since X; is a function of M; we have B C C, and
therefore U = PgA = PgPcA, so it suffices to prove that PoA is
finite-dimensional. Let f € A. Then

Pof =E(f|...,M_y,My) =E(f | M),

by the Markov property. But the latter depends only on M, so it
is in the linear span of the functions {1[My = s] : s € S}. Thus

dim(PcA) < |S]. O
Proof of Proposition £} Apply Lemmas [14 and [15. Since U is finite-
dimensional, choose an orthonormal basis ey, ..., e; that comprises or-

thonormal bases for each U;. Since Re; is orthogonal to e; for each ¢
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we have trace(R) = 0. But Lemma @(ii) implies that R has exactly
one non-zero eigenvalue, a contradiction. O

Hilbert space representations of k-dependent processes were also ex-
plored in [10]. We briefly discuss the connection with the above ap-
proach. It is shown in [10] that if X is a stationary k-dependent [g]-
valued stochastic process, there exist a Hilbert subspace H of L? and
bounded linear operators A, ..., A, on H that encapsulate the cylinder
probabilities of X via

P((Xy,..., X)) =2)=(A,, -+ A, 1,1)
with the subsidiary conditions
(14) (Ay+---+A)h=(h,1)1, heH,
(Ay+---+A)1 =1,
(AT +--+ A1 =1,
where 1 is the function that is identically 1. The subspace H is not

given explicitly in [10], though the operators A; are. The construction
above provides an explicit choice:

H - m, Az - PHIZ'T,

where I; = 1[X; = i]. (These A;’s are the same as in [10].) To
check (I4)), for example, take h € H and note that, since H C B,
we have PgTh = Rh € R*U C H, so that PgTh = Rh. Iterating gives
(PyT)"h = R"h for n > 1. Since A; + ---+ A, = PyT, Lemma [14(ii)
gives (I4]).

6. ONE-COLOR MARGINALS

Theorem B](ii) is a consequence of the following more general result
that in any 1-dependent coloring, the set of locations of a single color
has a simple structure.

Proposition 16. Suppose that (X;)iez is a stationary 1-dependent q-

coloring. Suppose p := P(Xy = 1) > 0. Then the process J defined by

J; == 1[X; = 1] is a renewal process, and its renewal time T (the num-

ber of steps between consecutive 1°s) has probability generating function
2

S P R
Gls) s 1 — s+ ps?

The fact that J is a renewal process is due to Fuxi Zhang. We are
grateful for her permission to include it.
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Proof of Proposition [1d. To prove that J is a renewal process we must
check that (J;);<o and (J;);~0 are conditionally independent given J, =
1. Since X is a coloring, Jy = 1 implies J_; = J; = 0. For a string
u € {0,1,%}" we write P(u) := P(J; = w; Vis.t. u; # ) (so that
*’s denote unrestricted symbols). Let u,v € {0,1}""! be any binary
words. Then

P(u010v) = P(uxlxv)

= p P(u) P(v)

= p ' P(uxl) P(1xv)

=p ' P(u01) P(100)
(where in the 2nd and 3rd equalities we used 1-dependence of J, and
in the 1st and 4th we used the fact that J has no consecutive 1’s).
Now dividing through by p shows that the events (J_,,...,J_1) = u0
and (Jy,...,J,) = Ov are conditionally independent given J; = 1, as

required.
Turning to the renewal time distribution, we write

pn = P(10"711) /p.

This is the conditional probability given that we have just seen 1 of
waiting n steps until the next 1, thus (p,),>1 is the probability mass
function of the renewal time. Note that p; = 0. The probability
generating function is defined by

G(s) := ans”.
n>1
Since J is a renewal process, for any integers k; > 0 we have
(15) P(107110%7 -+ 057 ) = p pry oy -+ - i
We claim that
(16) p(G(s) + G(s)2 +G(s)* +---) =p* (s +° + s +---).

To check this, observe that by (IH]), the coefficient of s" on the left
side is the sum of P(1ul) over all binary strings u of length n — 1. But
this is simply P(1 *"~1 1), which equals 0 for n = 1 (by the coloring
property) and p? for n > 2 (by 1-dependence), as required for the right
side.

Finally, summing the geometric series in ([If) and solving gives the
claimed formula for G(s). O

m*

Proposition [1d yields an alternative proof of the following result of
Schramm (see [20] for Schramm’s original proof).
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Corollary 17. In any stationary 1-dependent q-coloring, any given
color has marginal probability at most 1/4. In particular there is no
stationary 1-dependent 3-coloring.

Proof. Suppose that p > 1/4. Then both singularities of G (viewed
as a function on the complex plane) are complex. This contradicts
a theorem of Pringsheim from 1893 (see |13, Theorem IV.6] or [44,
§ 7.21]): a Taylor series with non-negative real coefficients and finite
radius of convergence R has a singularity at R. O

We remark that the possibility of a stationary 1-dependent 3-coloring
can also be ruled out without appeal to Pringsheim’s theorem as fol-
lows. In the Taylor series for G, the coefficient of s is p(1 —p)(1 — 3p),
which forces p < 1/3. But if p = 1/3 then the coefficient of s® is
—1/81 < 0.

Proof of Theorem ( i1). We prove that any stationary 1-dependent 4-
coloring has property (ii), as claimed at the end of Theorem 4. By
Corollary ﬂ, each color must have marginal probability exactly p =
1/4, in which case the probability generating function of the renewal
time in Proposition [1d factorizes to become
s \2
Gls) = (2 — s) '
But this is the probability generating function of the sum of two in-
dependent Geometric(1/2) random variables, which yields the claimed
description of the process J. O

One straightforward consequence of Theorem @(ii) is that for any
stationary 1-dependent 4-coloring X,
P(Xy,..., X, €{2,3,4}) = Zn—tf
For our 4-coloring this also follows from Corollary [1d with g =3 (and
symmetry).

Corollary [17 and its proof reflect the fact that ¢ = 4 colors is in
a sense a critical case for the 1-dependent coloring problem. This is
one reason for our belief that the solution is unique. See Section 9 for
extensions of some of these ideas to general graphs.

Finally in this section we derive the claimed description of the one-
color marginal for the 3-coloring, for which we need to return to proper
buildings.

Proof of Theorem ( iv). Tt suffices to check that the two processes have
equal probabilities of assigning 1’s to every integer in a finite set A C Z,
since all other cylinder probabilities can be computed from these by
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inclusion-exclusion. Since both processes are 2-dependent and have no
adjacent 1’s, it is enough to do this for A of the form {1,3,...,2m—1}.

Let P(z) = Ps(z) = 2B(x)/(n+2)! denote the cylinder probability of
the 3-coloring for the word = € [3]". We use *’s to denote unrestricted
symbols in [3] to be summed over, so that 2-dependence of the process
says that P(zxxy) = P(x)P(y) for all words x and y. Lemma% gives
that for every proper coloring x € [3]",

(17) (n+2)P(x) = Z P(z;).

Write p,, := P(1x1x1---x1), where the word has m 1’s and length
2m — 1, and pgy := 1. Then,

(2m 4+ 1)pp = P(x1x1x1 -+ ) + P(Tsklsl -+ ) + P(Iklskkl -2 ) 4 - -
= PoPm-1 + P1Pm-2 + = + Pm—1Po-

(The first equality requires some care: the left side does not change if
we interpret each * as being summed over {2, 3} instead of [3]; then we
can apply (7). The words that arise from deleting a * vanish, since
they are not proper colorings, and in the others we may allow each x
to revert to its original meaning, since it is still adjacent to a 1. For
the second equality we use 2-dependence).

We now show that the cylinder probabilities of the second process
satisfy the same recurrence, whereupon induction will finish the proof.
Indeed, let ¢, = P(U; < Uy > Us < -+ > Uspy1), where the in-
equalities alternate, and qg := 1. This equals the probability of the
event E that the elements of a uniformly random permutation 7 in
Soma1 satisfy the same inequalities. We decompose E according to the
location of the maximum of 7. The conditional probability of £ given
To; = 2m+11is

P(- -+ < o9 > oi—1) P(mait1 < Mg > -+ ) = Gim1m—i- [l

7. ALTERNATIVE FORMULA

In this section we derive a different formula for the cylinder proba-
bilities of the 1-dependent 4-coloring X of Z. It was this formula that
originally convinced us that such a coloring must exist (contrary to
much circumstantial evidence), since it has all the required properties,
except that it appears extremely difficult to prove directly that it is
nonnegative. We were led to our solution by seeking recursions satis-
fied by this formula, and finding the equivalent of Lemma [ (which we
then re-interpreted via buildings). Below we state the formula, after



FINITELY DEPENDENT COLORING 25

some necessary definitions. We then discuss applications and motiva-
tion before giving the proof. The basic idea is to start with a postulated
law for the 1-dependent binary process (1[X; = 1 or 2]);cz, and try to
build the law of X around it.

We identify the 4 colors with binary strings of length 2. It is conve-
nient to use the binary symbols +(= +1) and —(= —1), and to write
the strings as column vectors, so 1,2,3,4 = (:), (;), (J_r), (i) (say; the
choice of bijection is immaterial). Then a word x € [4]" becomes a

2 x n matrix, and we denote its rows y,z € {—, +}™:

) Y Y2 o YUn
Z’Z(I1>I2,..->l’n):<z):(zl Zg e ZTL)

Let y € {—,+}", and let a(y) denote the number of permutations
T € Spy1 such that m; < 7y ify; = +, and m; > 7,4 if y; = —, for each
1 <i < n (in other words, the number of permutations with descent set
given by the locations of —’s, or the number of linear extensions of the
(n + 1)-element poset generated by these inequalities). For example,

if y= + - + 4+
then Oé(y):‘{ﬂ'GSg,I 7T1<7T2>7T3<7T4<7T5}‘:9.

(See e.g. [38] for information about «). If (U;);cz are i.i.d. Uniform
n [0,1] and we let Y; := (—1)1W>Uini] then P((Y1,...,Y,) = y) =
a(y)/(n+ 1)!. This will be the law of Y, where X = (}Z/)
A Dyck word of length 2k is an element of {—,+}* comprising
k +’s and k —’s, such that the ith + precedes the ith — for each 1.
A dispersed Dyck word of length m is an element of {—,0,+}™
that is a concatenation of Dyck words and strings of 0’s. Examples
of dispersed Dyck words are +—0++——00, 000, and +—+— (but not
+0—). Let DD(m) be the set of dispersed Dyck words of length m,
and for w € DD(m), let |w| be the number of +’s in wll
If y € {—,+}" has m intervals of constancy (or runs) and w €
DD(m — 1), define y,, € {—,+}" to be the word obtained by changing
the signs of some whole runs of y, not including the first and last runs,
in such a way that the jth sign-change between runs is eliminated
precisely for those j with w; # 0. For example, with n = 15 and

'We remark that |DD(m)| = (LmW/LQj)’ although we will not use this. For a

,3) to (m,+1) via steps (1,=£1).

and % to 0’s, and reflect excursions below —% into

bijective proof, consider a lattice path from (0

Map steps between heights —%
excursions above %
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m =9,
if w = + + - = 0 + - 0
and  y=4++ — + — 4+ —— + — +
then gy, = +++ ++ + + ++ — - — +,

(where the horizontal spacing emphasizes the runs of y). Note that
Y depends on w only through the locations of its Dyck words, not on
which words they are, so for instance ¥y, o+ 0 =%+ 1+ _0+_0-

Now let y,z € {—,+}", and let m be the number of runs of y.
For 1 < j < m —1, let ¢; and r; be respectively the elements of z
immediately before and after the jth sign-change in y. For example, if

Y\_(++ ——— ++ - ++
z R1Z2 k32425 ZeRT X8 Z9 %10
then {1 = 2z, 11 = 23, and r3 = {4, = zg, etc. Let

m—1 | 4j, w; = +;

c(w,y, z) = H ri, wj=—;
1

J=1 R W, = 0.

We are now ready to state the formula. For z = (Y) € [4]", where y
has m runs, define

(18) Q) =@(y) -

z
o ol ifrisa
2 Z ( ].) C(w> Y, Z) Oé(yw) proper COlOI‘ing;
weDD(m—1)
0 otherwise.

Theorem 18. For x € [4]" we have B(z) = Q(z).

In consequence, the cylinder probabilities P(z) for the 4-coloring X
of Theorem [I can of course be expressed as P(x) = Q(z)/[2"(n + 1)!].
Theorem [I§ will be proved by showing that Q(x) satisfies the same
recurrence as B(z) (Lemma @b), It is now easy to deduce the claimed
marginal distribution for the first binary digit.

Proof of Theorem (m) We claim that
(19) > oY) =rat.  ve{-

Ze{_’+}7l

then the result is immediate from Theorem [I8]
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To prove (I9)), sum (I8]) over z and interchange the order of summa-
tion. The contribution from the trivial word w =00---0 is

Y. 27 aly) = 2"a(y),
z:x is proper
since z must alternate within each run of y, and thus there are 2™
choices. The contribution from every other w vanishes. To see this, fix
a nontrivial w, and consider the location of the first + in w. For any z,
let 2’ be obtained from z by changing the sign of every symbol in the
run of y that precedes that +. Then c(w,y,2') = —c(w,y, z), so the
terms corresponding to z and 2z’ cancel. 0

Theorem [I§ implies a host of combinatorial identities; we briefly
highlight some examples. Re-interpreting the result proved above in
terms of buildings gives the following. For y € {—, +}", define S(y) C
[4]™ to be the Cartesian product

O L2, vi=
S(y) -—X{{374}’ g =

i=1
Then we have
> Blx)=2"aly), ye{-+}"
z€S(y)

When y = ++ - - - + this is Corollary [1d with q = 2, but it seems much
less clear why the general case holds. Can it be given a bijective proof?
Taking y alternating of even length and combining with Theorem @(iv)
yields the curious identity

Z B(z) = néi . Z B(x), n>1.

ze({1,2} x{3,4})" ze({1,2}x{3})"

The Sy;-symmetry of B(x) implies in particular that

o()-0) vecror

Again, it does not seem at all clear how to prove this directly from the
definition (I8). For instance, in the very simplest case where z is a
constant word and y is alternating, it reduces to

> [H(—Ctj)] a2t +1,...,2,+1) =2"" n>1,
m>1, t1,...,tm>0: j=1
Zj(th-i-l):n
where a(ky, ..., k) denotes a(y) for a word y constructed so as to

have successive run lengths ki, ..., kn, and C; := (%)/(t + 1) are the
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Catalan numbers. We have found a direct proof of this last identity,
but even this involves a fairly intricate inclusion-exclusion argument
for posets.

Another application of the formula (I8]) is that it gives rise to a com-
putationally efficient method for computing the cylinder probabilities
of the 4-coloring. Indeed, there is a recurrence based on (I8) that al-
lows Q(z)(= B(z)) to be computed in O(n?®) operations for a word z
of length n, whereas a naive application of (I8]) requires exponential
time, as does computing B(z) via Lemma [d. We state this recurrence
at the end of this section.

Before giving the proof of Theorem [I§ we briefly discuss how we
arrived at the formula (I8) (before knowing whether any k-dependent
g-coloring existed). Suppose X is a 1-dependent 4-coloring, and de-
compose it into two binary sequences X = (}Z/) Then Y is a stationary
1-dependent binary process. The law of such a process is determined
by the sequence v, = P(Y; = --- =Y, = +), since all other cylin-
der probabilities can be computed from v by inclusion-exclusion. Of
course, the sequence v must satisfy certain inequalities in order that
these cylinder probabilities be nonnegative. Many choices for v are
possible. Examples are those for which 1,1, vy, v9,vs3,... is a Pdlya
frequency sequence — see [27, Chapter §].

Suppose for the purposes of the current discussion that Y is any
stationary 1-dependent binary process, and let o’ be defined by
P[(Y1,...,Y,) = y] = &'(y)/(n + 1)l. By considering the constraints
imposed on the cylinder probabilities of X by 1-dependence, one is led
(after a certain amount of computation and some inspired guesses) to
the hypothesis that P[(X71,..., X,) = z] = Q'(x)/[(n+1)!2"], where Q’
is given in terms of o’ by the formula (I8). It is not difficult to check
that a Q" defined in this way satisfies the equalities required for con-
sistency and 1-dependence of X, for any o' arising from a stationary
1-dependent Y.

The only issue is nonnegativity of @'(z). This does not hold for
general o: for instance if Y is i.i.d with P(Yy = 4) = 1/2 then one
can check that Q'(x) < 0 for y = +—+— and z = ++++. In fact
it appears likely that o/ = « is the only choice that works. However,
it seems extremely difficult to prove nonnegativity of @) directly from
(IR) in that case. The only way we know is to prove that () satisfies
the same recurrence as B.

We now turn to the proof of Theorem 1d A key ingredient is that
« satisfies a recurrence similar to the one that we wish to check for
Q. As before, let a(ky, ..., k) denote a(y) where y is a binary word
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with m runs of successive lengths kq,...,k,,. If one k; is 0 the in-
terpretation is that the two neighboring intervals coalesce, so that for
example Oé(]{il, ]{52, 0, ]{74, ]{55) = Oé(]{il, ]{32 + ]{?4, ]{55) and Oé(O, ]{52, ]{53, .o ) =
Oé(]fg, ]{53, . )

Proposition 19. For positive integers ky, . .., kpy,

Oé(k‘l, k’g, ceey k‘m)
= Oé(k‘l—]., ]{52, ey km)+a(k1, k’g—l, ey km)+ . -—l—a(k‘l, ey k‘m—]_)

This is a special case of the main result of [11], when applied to the
poset that defines a. We also give a simple direct proof.

Proof of Proposition [19. Suppose a(ky, ..., ky,) = ay) where y €
{— 43" is of length n = >, k;. Let E be the set of permutations
m € S,y that satisfy the inequalities in the definition of a(y), so
a(y) = |E|. For 1 <i<n+1, let E; be the set of permutations 7 € £
that have their maximum at 7, ie. m;, =n+1. Forl <i<n+1 we
further distinguish according to the order of the neighboring elements:
let E;" be the set of 7 € E; such that m;_; < m;y1, and define E;
similarly with the inequality reversed. Clearly,

E=FUE,U |J (BfUE)),
1<i<n+1

and the union is disjoint. However, F; is empty unless 7; is al-
ready a local maximum in the sequence of inequalities defining E (i.e.

(yi—1,9:) = (+, —), where restrictions on “yo” and “y,1” are ignored).
In that case, we have

‘E:_| :Oé(]{fl, ]{72, ey kj—la ]{Zj—l, ey km),

|E2_| :Oé(k’l,k’g,...,k’j_l—l, k‘j ...,k’m),

when 1 < i <n+1and (y;_1,¥) = (+,—) is the boundary between
the (7 —1)st and jth runs of y, and similar statements hold for £, and
E,.1. (Indeed, the maximum element n + 1 in the permutation can
be ignored, and the remaining elements 1,...,n satisfy precisely the
inequalities required for the appropriate “reduced” «). O

Proof of Theorem [18. Recall that z; denotes the word = with the ith
symbol deleted. We claim that if 2 € [4]" is a proper coloring,

(20) Qz) =3 _ Q).



30 HOLROYD AND LIGGETT

Once this is proved, the result is immediate, since Lemma d states that
B satisfies the same recurrence, and Q(0)) = B()) = 1 for the empty
word 0.

Let x = (Z) and let y have m runs. Since z alternates within each
run of y, we have Q(7;) = 0 whenever ¢ is an interior point of a run,
because Z; is not a proper coloring. So, we need to compute Q(7;)
when 7 is an endpoint of a run of y.

Suppose first that ¢ is an endpoint of a run of length at least 2, and
suppose initially that it is not the first or last run. If, for example, i is
an endpoint of the jth run of y, and that run is ————, the relevant
part of x is

y e T S SR
€Tr = = ,
z gj—l Tj—l Kj T’j

and if 7 is the left endpoint of that run, the corresponding ; is

~ (¥ e+ - = =t
:(;‘Z-: ~ g s
Zi biv =11 by

while if 7 is the right endpoint of that run,

~ (¥ e+t - = =t
i = | ~ = .
Z biv i =l Ty

In passing from x to Z;, the value of m is unchanged, while the
value of n is decreased by 1. In the first case above, the sign of r;_;
is changed, while in the second case, the sign of ¢; is changed, and
therefore

e(w, G 5) = c(w,y, 2) (~1)Hw-=]
in the first case, and
C(w7 @\iv 22) = C(UJ7 Y, Z) (_1)1[wj:+}

in the second. If we set wy = w,,, = 0 then these also hold when the run
is the first or the last. In both cases, ¥; is ob/tiined from y by shortening
the corresponding run by 1, and (¥;)w = (Yw);. Denote their common
value by ¥y So, the contribution to the right side of (20]) from (both

endpoints of) this interval is
(21)

gn—1l-m Z (_1>|w\c(w7 Y, Z)Oé(y\w,i) (_1>1[w]‘71=—] + (_1)1[wj=+}
weDD(m—1)
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The last factor (—1)wi-1=71 4 (—1)1i=F can be written as
2I(wj_1,w;) where

+1, (w,v) =00 or +—;
I(u,v) = ¢ -1, (u,v)=—+;
0, otherwise.

This follows simply by considering all possibilities for (w;_1,w;), noting
that 0— and 40 are impossible in a dispersed Dyck word. Therefore

(1) equals

(22) A Z (_1)‘wlc(w>y>Z)a(@\w,i)l(wj—lawj)a
weDD(m—1)

Now suppose i is the sole element of a run of length 1. Again n is
decreased by 1 in passing from = to Z;, but now m decreases by 2 if
l<i<mn,orbylifie{l,n} Ifi=1,cach w' € DD(m — 2) in the
sum defining (1) can be made into a w € DD(m — 1) by adding a 0
at the beginning, and this gives

Q(i}l) =2 Z (_1)‘wlc(w> Y, Z)O‘('?/\w,l)'

weDD(m—1):
w1=0

Similarly, for i = n, we add a 0 at the end:

Q(/x\n) = 2n—m E (_1)‘wlc(w7 Y, Z)Oé(/y\uhn)'
weDD(m—1):
Wyn—1=0

If 1 <7 < n, then (for example)

y SRR — TR
r = = ,
z biov i =4 1y

A_(@-)_(-~-+++ +++-~-)
Ti= |~ )= .
Zi Kj_l T

This is a proper coloring if and only if ¢, # r;. We will introduce a
factor (1—¢,;_17;)/2 to account for this constraint. Let w’ € DD(m—3)
be a word in the sum corresponding to Q(7;). We can try to make w’
into a word in DD(m—1) by inserting 00, +— or —+ before the (j—1)st
symbol of w'; denote the resulting words wgg, wy_,w_,. Inserting +—
introduces an additional factor ¢;_17; to ¢, and changes |w’'| by 1. Ex-
actly one of wgg, w_, is a dispersed Dyck word (inserting —+ succeeds
precisely when there is a Dyck word that cannot be broken apart at the
insertion point — note that e.g. +—+— can be broken in the middle,
so here we would insert 00). Inserting 00 leaves ¢ and |w’| unchanged,

and
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while —+ multiplies ¢ by r;_1¢; = 1 and changes |w’| by 1; we intro-
duce an extra sign change in this last case so that we can get the factor
(1 —¢;_17;)/2. The conclusion is

/ L=t
(~)" e, §i, 5) — 2
=1 > (YPle(wy,z) (-1
weDD(m—1)N
{woo, w4 w—4}
Therefore,
(23) Q@;) =2""" Z (_1)‘wlc(w>y>Z)a(@\w,i)l(wj—lawj)a
weDD(m—1)

where [(w;_1,w;) is precisely the same quantity as defined for the
earlier case, and where the factor 1/2 has canceled the extra 2 in
2(n=1=(m=2) = Pinally, note that if we again set wy = w,, = 0 then
(23) is valid in the cases i = 1, n also.

For each 1 < j < m, write ¥, ; = Yuw, where ¢ = i(j) is in the jth
run of y. This is the same for all runs j that coalesce into a single run
when we form y,,. Summing over all runs of y, we see that the right
side of (20]) can be written as

2N ()ew,g.2) Y ) o).

weDD(m—1) j=1

Each Dyck word in w corresponds to a run of y,,, as does each 00 (where
again we take wy = w,, = 0). Every Dyck word contains exactly one
more +— than —+. Therefore, the sum of I(w;_1, w;) over those j that
correspond to a given run of y,, is 1. By Proposition @, the right side

of (20) agrees with Q(z). O

Finally, we state the promised alternative recurrence for () that al-
lows for efficient computation. We have for all proper colorings = € [4]",

n+1

Qx) =Y Qw),

where the quantity Q¥(z) = QF (z) is defined for integers & > 0 and
1<r<n+1by

Qf(x) =1[k=0and y; = (-1)""'], n=1,
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and for n > 2,

2Q% (), Y1 = Yo;
Qf(x) = Z QL (@) — Q5 (@), y1 # y2 and k = 0;
€5 | QN (T1) — 2Q N (T1), w1 #y2 and k>0,

where

{17"'7T_1}’ Y1 = (_1)k+1'
We omit the proof of this, which is a straightforward check given the
following explanation. The quantity Q% (z) represents an extended ver-
sion of @(z) in which we sum over “partial dispersed Dyck words” w
that can be made into a dispersed Dyck word by appending exactly &
+’s at the beginning, and where in addition each «a(y,,) is modified by
restricting to permutations 7 € S, satisfying m = r.

S = {{Tv”‘vn}v = (_1)k§

8. HIGHER DIMENSIONS AND SHIFTS OF FINITE TYPE

In this section we prove Corollaries [ and [d. Let || - || = | - |1
be the 1-norm on Z¢. The distance between two sets A, B C Z< is
inf{||u —v| : u € A, v € B}. We first observe that the definition of k-
dependence for graphs given in the introduction is consistent with the
earlier definition for Z. Indeed, suppose X is k-dependent according
to the earlier definition. Then if (;);cs is any collection of intervals of
Z no two of which are within distance k then the restrictions (X, ) es
form an independent family; this follows by inductively adding one
interval at a time. Now if A, B C Z are at distance greater than k then
X|a and X|p are independent, since A and B can each be partitioned
into subsets that are contained in such a collection of intervals.

We need the following extension of Theorem M. Write u % v if
0 < |lu—wv| <m. A process (X,),ez¢ is a range-m g-coloring if each
X, takes values in [q], and almost surely X, # X, whenever u < v. (A
range-1 coloring is simply a coloring).

Corollary 20. Let d > 1 and m > 1. There exists a stationary m-
dependent range-m q-coloring of Z2, where q < exp(cm®) for an abso-
lute constant c.

Proof. A line is a subset of Z¢ of the form L = {a+ih : i € Z}, where
a,h € Z* and h # 0. We call h the direction of L. We will place
independent copies of the 1-dependent 4-coloring along each line in a
suitable family, and combine them to form the desired process.

More precisely, let H be a set comprising exactly one of h and —h
for every h € Z¢ with 0 ~ h. (For instance, in the case m = 1 we can
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take H to be the set of d standard basis vectors.) For each line L of
74 with direction in H, take a copy X’ of the 1-dependent 4-coloring
of Theorem EL with the copies being independent for different lines.
Assign the color X[ to the point a + jh, where L = {a +ih : i € Z}
(and a € L is chosen arbitrarily, but is deterministic and fixed for
the particular line). Let Y € [4] denote the color thus assigned to
v € Z¢ by the unique line of direction h passing through v. Finally
define Z, to be the vector (V" : h € H) € [4]". The desired process is
Z = (Zv)veld'

Clearly Z is stationary, and its elements take 4/l values. It is a
range-m coloring since for any u,v with u ~ v there is a line on which
u, v are consecutive points, so Z, and Z, differ in the coordinate cor-
responding to its direction. (Two points on a line of direction h are
said to be consecutive on the line if they differ by +h.) To check
m-dependence, note that if A, B C Z¢ are at distance greater than m
from each other then every line with direction in H that intersects both
A and B does so in two non-consecutive sets. Thus Z|4 and Z|p are
functions of independent collections of random variables. O

Proof of Corollary E(z} This is Corollary 20 with m = 1. (The number
of colors is q = 4%). O

To state the relevant results from [20] we need to generalize block-
factors to d dimensions. Denote the ball B(r) := {v € Z% : ||v| < r}.
A block-factor map is a map F : RZ — RZ’ characterized by an
integer r called the radius and a measurable function f : R — R
via

(F(z))y = f((07"2)|pw), =eRE veZd

where 67" denotes translation by —v (so (07"z), = Zyyy). (Thus, an
r-block-factor on Z is a process that can be expressed as a radius-|r /2]
block-factor map of an i.i.d. process on Z).

Lemma 21. Let X be a stationary k-dependent process on Z% and
let F' be a radius-r block-factor map. Then F(X) is stationary and
(2r + k)-dependent.

Proof. This follows easily from the definitions. O
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Theorem 22 (Holroyd, Schramm and Wilson; [20]).

(i) Let d > 1. There exists m such that for any q there exists a
block-factor map F with the following property. If X is a range-m
q-coloring of Z¢ then F(X) is a (range-1) 4-coloring of Z°.

(ii) Let S be a non-lattice shift of finite type on Z. There exists m such
that for any q there exists a block-factor map I with the following
property. If X is a range-m q-coloring of Z then F(X) belongs to
S almost surely.

The somewhat awkward series of quantifiers above reflects the need
to encapsulate the relevant results from [20] cleanly without going into
details of their proofs.

Proof of Corollar E(z’z’) and Corollary [d. The results are immediate
from Corollary [Zi Lemma |2_J.|, and Theorem [22. 0

We make a few remarks about the scope of Corollaries H and [d.
While the colorings of Corollary H are stationary (meaning invariant
under translations), they are not invariant in law under all isometries
of Z%, because the proof imposed an ordering on the set of line di-
rections, which is not invariant under permuting the coordinates. We
do not know how to construct an isometry-invariant finitely-dependent
coloring of Z% for d > 2. Similar remarks apply to trees, as pointed out
by Russell Lyons (personal communication). Treating a regular tree
as the Cayley graph of a free group, we obtain a 1-dependent coloring
that is invariant under the action of the group itself (which is vertex-
transitive), by the same approach as in the proof of Corollary H. How-
ever, we do not know how to construct a fully automorphism-invariant
finitely dependent coloring.

As remarked in the introduction, another result of [20] implies that
there is no stationary k-dependent 3-coloring of Z¢ for any k and d > 2.
In fact, there is no stationary 3-coloring of Z? whose correlations decay
faster than a certain polynomial rate.

It is straightforward to check that if S is a lattice shift of finite type
on Z then there is no stationary finitely dependent process that belongs
almost surely to S. In fact, there is no stationary mizing process that
belongs to S; again, details appear in [20].

9. ONE-DEPENDENT HARD-CORE PROCESSES

In this section we prove Proposition [d. We also discuss properties
of 1-dependent hard-core processes, which are interesting in their own
right. Let G = (V, E) be a simple, countable, undirected graph with
all degrees finite. Recall that a hard-core process J = (J,)ev is a
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{0, 1}-valued process with no adjacent 1’s, and that p,(G) is defined to
be the supremum of p for which there exists a 1-dependent hard-core
process with all its one-vertex marginals P(J, = 1) equal to p.

In Lemmas 23 and 24 below we record some simple but interest-
ing observations about py. Closely related ideas appear in work of
Scott and Sokal [41, 42], where a rich web of interconnections involv-
ing mathematical physics and probabilistic combinatorics is explored.
The arguments we use in the proofs of Lemmas 24 and 4 are largely
present in those articles, at least implicitly. However, our particular
viewpoint (focussing on 1-dependent hard-core processes, especially on
infinite graphs) is apparently novel, as is our application to coloring.
As another application of our approach, we give an alternative proof
of a result of Shearer [43] at the end of this section.

Lemma 23. Let G be a graph. For each p < py there exists a unique
1-dependent hard-core process with all one-verter marginals equal to p.
This process is invariant in law under all automorphisms of G.

Proof. We first observe a general monotonicity statement: if a 1-
dependent hard-core process J with one-vertex marginals P(J, = 1) =
p, exists, and if p/ < p, for all v € V| then such a process exists with
marginals (p/). This follows by thinning: let (e,),cv be {0, 1}-valued,
independent of each other and of J, with P(e, = 1) = p!, /p,; then take
J! = €,Jyp.

The above shows that a 1-dependent hard-core process exists for all
p < pn. To extend this to p = py, take a sequence p,, * p,, and a process
for each p,, and consider a subsequential weak limit in distribution
J (which exists, by compactness). Since probabilities of all cylinder
events converge, J has all marginals equal to py, and is a 1-dependent
hard-core process.

Uniqueness and automorphism-invariance follow from the more gen-
eral fact that the law of a 1-dependent hard-core process is determined
by its one-vertex marginals p, = P(J, = 1). Indeed, the law of a bi-
nary process J is determined by the probabilities P(J = 1 on A) for
finite A C V, since all other cylinder probabilities can be computed
from them by inclusion-exclusion. But this probability equals 0 if A
contains two neighbors, and otherwise it is [], 4 po- 0

For a finite set of vertices A C V and A € R, define
ZaN) = Y AL
BET(A)

where Z is the set of all independent subsets of A (or hard-core con-
figurations), i.e. subsets of A that do not contain any two neighbors in
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G. This is the partition function of the standard hard-core model of
statistical physics; it is also known as the independence polynomial of
the induced subgraph of A. See e.g. |29, 142].

Lemma 24. Let G = (V, E) be a graph and let p € [0,1]. We have
p < pu if and only if Za(—p) > 0 for every finite A C V. If G is
infinite and connected then this is also equivalent to the statement that
the strict inequality Z 4(—p) > 0 holds for every finite A C V.

Proof. Suppose that p < py, so a 1-dependent hard-core process J with
marginals p exists. Then by inclusion-exclusion,

(24) P(J=0on A)=> (-1)/PIP(J =1 0n B) = Za(—p),
BCA
so the last quantity is non-negative.
Moreover, all other cylinder probabilities can be expressed in terms of
those above. Let B, C be disjoint finite sets of vertices with B € Z(V),
and let C” be the set of vertices of C' that have no neighbor in B. Then

P(J=1on B, J=0onC)=P(J=1on B, J=0on ")

= 1 Zoi (—p).

Thus, given Z4(—p) > 0 for all A, we can compute non-negative ex-
pressions for all cylinder probabilities, and it is easy to check that they
are consistent and give rise to a 1-dependent hard-core process with
marginals p. Thus p < py.

Here is a useful recurrence. Suppose A C V is finite, let u € A, and
define A" := A\ {u} and A” := A"\ N(u), where N(u) denotes the set
of neighbors of u. Then by an argument similar to the above,

(25) Za(=p) = Za(=p) = p Zar(—p).

(Indeed, it is a standard and straighforward fact that this identity holds
for any parameter A, regardless of the existence of the process J; see
e.g. |29, 42]).

To prove the final claimed equivalence, suppose that G is infinite
and connected. Let 0 < p < p,. (If p, = 0 then the claim is trivial.)
Suppose that Z4(—p) = 0 for some finite A C V', and let A be minimal
with this property. There exists a vertex u ¢ A that is adjacent to A.
Let B=AU{u}, B'= A, and B” = A\ N(u). Then applying (23] to
B, B', B” gives that Zp(—p) is negative, a contradiction. O

For an infinite connected G, our critical point p, coincides with the
critical point A. defined in [42] (in (5.3) and the immediately following
remark) in terms of the complex zeros of Z. This follows immediately
from Lemma 24 above together with Theorem 2.2(b,c) and (3.1) of [42].
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Consequently, the following bounds on p, are available. For any
infinite connected graph G of maximum degree A,

(A —1)21 1
(26) AR <p(G) < vk A>2.
For the infinite A-regular tree T, the lower bound is sharp:
(A —1)21
For the hypercubic lattice Z?,
(2d — 1)>! d d
2 — < (2" < ——— d>1.
(28) 2d)d = pu(Z7) < (d+ 1)a =

Proofs of (26),([28) appear in |41, §5.2, §8.4]; the lower bound in (20)
amounts to the Lovasz local lemma. The equality (27) is proved in
[43], and an exposition of the proof also appears in [41,42]. Note that
pn(Z) = 1/4. This is a special case of all of (20),([27),([28]), and also fol-
lows from the proof of Corollary [17. Using rigorous computer-assisted
methods, we supply the following improvement on (28)) in dimensions
2 and 3.

Lemma 25. We have the strict inequalities

1 1
7? —; A —.

Proof. The recursion (25]) gives Z4(—p) in terms of Zg(—p) for smaller
sets B C A. We use this to compute Z4(—p) numerically for rectan-
gular boxes of the form A = [a] x [b] C Z? and A = [a] x [b] X [c] C Z3.
After some experimentation to find appropriate box sizes, we obtained

Zn3)xo)(—1/8) < 0; Zngyx < (—1/11) <0,
giving the claimed bounds.

One must choose which vertex u to remove from a set A when apply-
ing (28). We always chose the lexicographically largest u € A, as this
tends to limit the number of smaller sets that need to be considered.
The method turns out to be numerically unstable, so that floating-
point arithmetic cannot be used. Instead we used exact arbitrary-
precision rational arithmetic. The quantity Zjgxpyxj(—1/11) is a
fraction with 100 digits in the denominator, and required the computa-
tion of Zp(—1/11) for 89077 sets B C [12] x [4] x [4]. (We provide the
computer code in an appendix to the arxiv version of this paper.) O

Proof of Proposition [1. As remarked in the introduction, the existence
of a 1-dependent g¢-coloring X with the variables (X,),ey identically
distributed implies that ¢ > 1/py,. Indeed, let a € [¢] be a color with the
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largest marginal probability p, (> 1/q); then J, := 1[X, = a] defines a
1-dependent hard-core process, so p, < pn. Now use the upper bounds

in (27), (28) and Lemma A O

The (non-rigorous) estimate p,(Z?) = 0.11933888188(1) was com-
puted in [45]. That this is greater than 1/9 indicates that a 9-coloring
of Z? cannot be ruled out by the methods of this section.

Finally, we present an application of our approach in the context of
[42]. Motivated by the case of Z in Theorem l4(ii), we give a very simple
explicit construction of the critical 1-dependent hard-core process J on
the A-regular tree T, thus providing an alternative proof of the upper
bound on py(Ta) in 7). (The original proof in [43] used analytic
methods). Fix an end of the tree. Assign the vertices i.i.d. {0,1}-
valued labels that are 1 with probability 1/A. Then let J, equal 1
if and only if v has label 1 and all its children have label 0. (The
children of a vertex are the A — 1 neighbors that do not lie on the
unique path to the nominated end.) Then P(J, = 1) = (A—1)2"1/A%
as required. It is interesting that the construction is invariant only
under automorphisms that fix the given end, while the process itself is
fully automorphism-invariant, by Lemma [23. Can the critical process
on Th be expressed as a fully automorphism-equivariant block-factor
of an i.i.d. process?

OPEN PROBLEMS

(i) Is the stationary 1-dependent 4-coloring of Z unique? We con-
jecture that the answer is yes. Is the stationary 2-dependent 3-
coloring unique?

(ii) Isthere a finitely dependent coloring (X;);cz such that X; = f(M;)
for a stationary countable-state Markov chain M7 (A finite state
space is impossible, while an uncountable one places no restriction
on the process). Can our two examples be expressed in this way?

(iii) What is the largest possible one-vertex marginal of a stationary
k-dependent hard-core process on Z for k > 27 Is it 1/3 when
k = 27 Is the critical process unique?

(iv) Can one of our two colorings of Z be expressed as a block-factor
of the other? As a finitary factor?

(v) Is there a stationary finitely dependent coloring of Z that can be
expressed as a finitary factor of an i.i.d. process with finite mean
coding radius? (In [19], the 4-coloring is expressed as a finitary
factor with infinite mean coding radius.)
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(vi) What is the minimum number of colors ¢ needed for a stationary
1-dependent g-coloring of Z2, for each d > 27 (For Z?, the answer
is between 9 and 16).

(vii) Does there exist a finitely dependent coloring of Z? for d > 2 that
it is invariant in law under all isometries of Z?? Does there exist a
finitely dependent coloring of a regular tree that is invariant under
all automorphisms, or all automorphisms that fix a given end?

(viii) On which transitive graphs is the existence of a 1-dependent hard-
core process with all one-vertex marginals equal to 1/¢ sufficient
for the existence of an automorphism-invariant 1-dependent ¢-
coloring? (It is necessary on any graph, and sufficient on Z).
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APPENDIX: COMPUTER CODE

Below we give the Python 2.7 code used in the proof of Lemma 3.
It computes the following values of the independence polynomial for
rectangular grids. (The first is included as a check).

Zigixs)(—1/5) = —552=:

7 (—1/8) — _ 60294169567161237625416728069877775945051113 .
[13]x[10] 25108406941546723055343157692830665664409421777856138051584

46344295466778955212216048923
88528007877566844283627882753
7 (—1/11) = — 10889047735211360981028087687
[12]x [4] % [4] 0412343651268540526001 18651191150 °
657486806311046954882395087600037
9062365652829504091329792873336961

from fractions import Fraction

def Z(A,t): # independence polynomial of set A
if A:
if (A,t) not in memo: # if not already computed
u=max (A) # choose site to remove

B=A.difference([u])
C=B.difference(nbrs(u))
memo [(A,t)]1=Z(B,t)+t*Z(C,t)
return memo[(A,t)]
else:
return 1 # empty set

def nbrs(u): # neighbors of a site in Z°d
for i in xrange(len(u)):
for k in -1,1:
yield ul:i]+(ulil+k,)+uli+1:]

def grid(s): # rectangular box in Z°d
if s:
return frozenset((i,)+u for u in grid(s[1:])
for i in xrange(s[0]))
else:
return frozenset([()])

memo={}

print Z(grid((3,3)),Fraction(-1,5))
print Z(grid((13,10)) ,Fraction(-1,8))
print Z(grid((12,4,4)) ,Fraction(-1,11))
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