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Abstract
We examine the question of whether a collection of random walks on a graph can be coupled

so that they never collide. In particular, we show that on the complete graph on n vertices,
with or without loops, there is a Markovian coupling keeping apart Ω(n/ log n) random walks,
taking turns to move in discrete time.

1 Introduction

Coupling of Markov chains has proved to be a valuable tool, notably, in recent years, in proving
rapid mixing. Our intent here is to isolate one very simple type of Markov chain (random walk,
especially on a complete graph) and to explore one particular capability, that of avoiding collision.

As an application, one may envisage some anti-virus software moving from port to port in a
computer system to check for incursions. It is natural to have such a program implement a random
walk on the ports so as not to be predictable. If another program (possibly with a different purpose)
also does a random walk on the ports, it may be desirable or even essential to prevent the programs
from examining the same port at the same time.

If two random walks are independent, they will collide in polynomial time on any finite, con-
nected, non-bipartite graph, even if a scheduler tries to keep them apart [CTW93, TW93]. Only if
the scheduler is clairvoyant—that is, knows the entire future of each walk—is there a possibility of
avoiding collision forever, and that case rests on a complex proof [Gác11] for enormous graphs.

Coupling, on the other hand, is a much more powerful technique for keeping random walks
apart. On the cycle Cn , for example (where the clairvoyant scheduler has no chance), coupling can
easily keep linearly many random walks apart, simply by having them either all move clockwise, or
all counter-clockwise, at the same time.

Keeping random walks apart on a complete graph Kn by coupling—especially Markovian cou-
pling, which we define more formally below—appears to be a more difficult task. We apply a
number of techniques to achieve such couplings, depending on number-theoretic properties of n .
For infinitely many n there is a Markovian coupling which keeps apart (n− 1)/2 random walkers,
and for all n there is a Markovian coupling which keeps apart Ω(n/ logn) random walkers. We
have essentially the same results on the looped version of the complete graph K∗

n , and in this case
we also have non-Markovian couplings of linearly many walkers, for all n .

The related problem of coupling two Brownian motions (on various domains) so as to keep them
at least some positive distance apart has been studied in some depth—see [BBC07, Ken09, BBK10].

1



2 Preliminaries

We refer the reader to a modern text such as [AF02, LPW09] (both of which are accessible online),
for background on discrete Markov chains. All of our Markov chains are time-homogeneous and
have finite state spaces.

A coupling of Markov chains is nothing more than an implementation of the chains on a
common probability space, in such a way that each chain, viewed separately, is faithful to its
transition matrix. In what follows, Xt and Yt for t = 0, 1, 2, . . . will represent simple discrete-time
random walks on the loopless complete graph Kn , or its looped counterpart K∗

n (in which each
vertex has a single self-loop, and the walk stays where it is with probability 1/n at each step).
Clearly a time t for which Xt = Yt should constitute a collision, but what if Xt+1 = Yt? If in
addition Yt+1 = Xt we call such an event a “swap”, otherwise a “shove”.

Allowing swaps and shoves makes things easy—on Kn , for example, we could couple n walks
simply by choosing, at each turn, a uniformly random derangement (or a uniformly random cycle) σ ,
and having the walker at i move to σ(i).

Instead, we make the issue of swaps and shoves moot by having the walkers move alternately—
in the case of two walkers, in the order X0, Y0, X1, Y1, . . . . Then the events Xt = Yt and Xt+1 = Yt
both constitute collisions. Multiple walkers are assumed to take turns in a fixed cyclic order, and
again, a collision is deemed to occur exactly if a walker moves to a vertex currently occupied by
another. We call a coupling that forbids collisions an avoidance coupling.

Note that a collection of random walkers who move in continuous time, that is, after independent
exponential (mean 1) waiting times, can be coupled so as to take turns as above; if there are k
walkers, we simply have walker j wait for a random time after walker j−1 (modulo k ) has moved,
where the time is distributed according to a Gamma distribution with shape parameter 1/k and
scale parameter 1. (The sum of k independent such random variables is an exponential random
variable with mean 1.) Thus, any coupling of our alternating discrete-time walkers can be applied
to the continuous-time case.

A coupling is Markovian if it is itself a Markov chain, meaning, in the two-walker case, that
Xt+1 depends only on Xt and Yt , while Yt+1 depends only on Yt and Xt+1 . (Brownian couplings
with the analogous property are referred to as “co-adapted” in [Ken09].) To allow the walkers to
alternate, we tacitly assume that the state of the coupled chain includes the information of whether
it is the first or second player’s turn to move. For multiple walkers, the dependence is, similarly,
only on the current locations of all the walkers, and on whose turn it is to move.

Note that the transformation above from discrete-time to continuous-time chains does not
preserve the Markovian property. Indeed, it is rarely possible to get a Markovian avoidance coupling
for continuous-time chains:

Theorem 2.1. Let M be an irreducible, continuous-time, finite-state Markov chain. Then there is
no Markovian coupling of two or more copies of M, without simultaneous transitions, that avoids
all collisions.

Proof. Suppose X and Y are copies of M that are coupled in this way. Since M is irreducible, we
may fix some tour v0, v1, . . . , vk of all the states that has a positive probability. Let ri > 0 be the
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rate at which the transition vi−1 → vi occurs, and consider the probability p that when started in
state v0 , the single chain X follows the tour exactly and completes it in time less than ε . Then

p = (1 + o(1))

k∏
i=1

ri
εk

k!
= Θ(εk),

where the constants implied by the Θ notation depend on the Markov chain and the tour, but not
on ε .

Next we start the coupled chain (X,Y ) in state (v0, s) for some s , and consider the probability
q(s) that its projection onto the first chain takes the tour and completes it in time less than ε .
Since the coupled chain is collision-avoiding, it must take at least one additional step in order to
move the second walker out of the way. But then at least k+ 1 transitions must take place within
time ε , thus

q(s) ≤
∞∑

j=k+1

εjRj

j!
= O(εk+1)

where R is the maximum, over all states of the coupled chain, of the rate of transition out of that
state.

For the coupling to be faithful, however, we must have q(s) ≥ p for some s . Since p = Θ(εk)
and q(s) = O(εk+1), this is impossible for small enough ε .

3 Two walkers on three vertices

No avoidance coupling is possible for two walkers on K3 , since there is no choice of where to move,
hence no room for randomness. On the looped graph K∗

3 , however, a walker stays where she is
with probability 1/3. We shall see that this is enough to permit an avoidance coupling, but not a
Markovian one. In fact, we can completely analyze the more general walk on K∗

3 in which a walker
stays in place with some arbitrary probability s , and moves to each of the other two vertices with
probability (1−s)/2.

Theorem 3.1. Consider two walkers on K∗
3 , each with looping probability s ∈ [0, 1). There exists

an avoidance coupling if and only if s ≥ 1
3 , and there exists a Markovian avoidance coupling if and

only if s ≥ 1
2 .

Proof of Theorem 3.1, non-Markovian case. We first show that an avoidance coupling exists in the
case s = 1/3 (i.e., ordinary random walk on K∗

3 ). Given Xt and Yt , the pair (Xt+1, Yt+1) is chosen
uniformly at random among the allowed pairs, except (Xt, Yt) itself.

Thus, for example, if Alice is at 0 and Bob at 1, their new positions will be (0, 2), (2, 0), or
(2, 1) each with probability 1/3. Notice that this coupling is not quite Markovian, as Bob’s move
depends on Alice’s previous position—he is not permitted to stay put when Alice has just done so.

We prove by induction on t that Yt is uniformly random ̸= Xt , independent of Xs and Ys for
s < t . We may assume Xt = 0 for the purpose of showing that Yt+1 is uniform ̸= Xt+1 given
Xt+1 ; then, using the induction hypothesis and the coupling definition, the triple (Yt, Xt+1, Yt+1) is
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equally likely to be any of (1, 0, 2), (1, 2, 0), (1, 2, 1), (2, 0, 1), (2, 1, 0), (2, 1, 2), which completes the
induction.

Using this fact it easily follows that Alice’s sequence is i.i.d. uniform; using the fact again, it
follows that Bob’s sequence is also i.i.d. uniform, as required. (We remark that this coupling is
invariant under time reversal, except that Alice and Bob exchange roles.)

Turning now to the case s ≥ 1/3, we can modify the above coupling as follows. At each round,
with a suitable probability let both walkers stay in place. Otherwise they proceed to the next
round. This clearly increases the probability that each walker stays in place at any step, without
otherwise changing their trajectories.

Finally we must show that no avoidance coupling is possible if s < 1/3. Consider the event
that X0, . . . , Xn alternate between two (unspecified) states of K∗

3 . This has probability 2 (1−s
2 )n ,

since each jump has probability 1−s
2 . However, this event forces Y0 = Y1 = · · · = Yn−1 , which has

probability sn−1 . Taking nth roots and letting n → ∞ we find (1− s)/2 ≤ s , so s ≥ 1/3.

Proof of Theorem 3.1, Markovian case. Suppose first that there is a Markovian avoidance coupling.
Let pab be the probability that Alice stays at a given that it is her move, that she is at a , and
that Bob is at b . Let qab be the probability that Bob stays at b , given that it is Bob’s move, and
again that Alice is at a and Bob at b . That these quantities may only be defined for certain pairs
a, b will not interfere with our arguments.

Suppose Alice has just moved from 0 to 1. Her conditional probability of next moving back
to 0 is (1−s)/2. Bob must have been at 2 and will stay there with probability q12 , after which
Alice moves to 0 with probability 1−p12 . We conclude that (1−s)/2 = q12(1−p12).

Similarly, suppose Bob has just moved from 0 to 2. His conditional probability of next moving
back to 0 is (1−s)/2. Alice must have been at 1 and will stay there with probability p12 , after
which Bob moves to 0 with probability 1−q12 . So we get (1−s)/2 = p12(1−q12). Combined with
the conclusion of the previous paragraph, this gives p12 = q12 , and similarly pab = qab for all a ̸= b .

Since the equation p12(1−p12) = (1−s)/2 has no real solutions for s < 1
2 , the presumed coupling

cannot exist in this case.
We now demonstrate that, conversely, when 1

2 ≤ s < 1 there is a Markovian avoidance coupling
for two walkers. Let p and 1−p be the two (possibly equal) values of x satisfying x(1 − x) =
(1 − s)/2, and note that then p2 + (1−p)2 = s . Letting i′ stand for i+1 mod 3, put pii′ = p ,
pi′i = 1−p , and qij = pij . We claim that these values are the holding probabilities pij , qij (as
defined earlier in the proof) of a Markovian avoidance coupling.

To show this, condition on the event that Alice is at i at time 1. We will show that, condi-
tioned also on Bob’s position at time 0, Alice’s next step is to i (respectively i′ ) with the correct
probability s (respectively (s−1)/2); hence the probability she moves to i′′ is correct also. Since
the coupling is Markovian, Alice’s future depends on her past only through (X1, Y0), so this will
suffice to prove that Alice’s trajectory has the correct law. By the symmetry of our construction,
the same will then apply to Bob.

Suppose first that Y0 = i′ , that is, that Bob was at i′ one move ago. Then, with all probabilities
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conditional on {X1 = i, Y0 = i′} ,

P(X2 = i) = P(Y1 = i′)P(X2 = i | Y1 = i′) + P(Y1 = i′′)P(X2 = i | Y1 = i′′)

= qii′pii′ + (1−qii′)pii′′ = p2 + (1−p)2 = s,

and

P(X2 = i′) = P(Y1 = i′′)P(X2 = i′ | Y1 = i′′) = (1−qii′)(1−pii′′) = (1−p)p = 1−s
2 .

Observe that the coupling is invariant under replacing state i with −i mod 3, swapping ′ and ′′ ,
and substituting 1 − p for p . Since the above conditional probabilities are symmetric in p and
1− p , it follows that the distribution of X2 conditional on {X1 = i, Y0 = i′′} is also correct.

4 Two walkers for composite n

Theorem 4.1. For any composite n = ab, where a, b > 1, there exist Markovian avoidance
couplings for two walkers on Kn and on K∗

n .

Proof. We partition [n] := {0, 1, . . . , n−1} into b “clusters” S1, . . . , Sb each of size a . We construct
a coupling so that, when it is Alice’s turn to move, she and Bob are in different clusters. (This is
where we use b > 1.)

For the coupling on Kn , Alice’s protocol is to move with probability a(b−1)
ab−1 to a random vertex

in Bob’s cluster (other than Bob’s vertex), and move with probability a−1
ab−1 to a random vertex in

her own cluster (other than her current vertex). (This is where we use a > 1.) Bob’s protocol is
to move to a random new vertex in his current cluster, unless Alice is also in his cluster, in which
case he moves to a uniformly random vertex in a uniformly random unoccupied cluster. (After Bob
moves, he and Alice are once again in different clusters.)

The coupling for K∗
n is essentially the same, except that Alice’s probability of moving to Bob’s

cluster is b−1
b , and when either Alice or Bob move within their own cluster, the new vertex may

be the same as the current vertex.
Regardless of how Alice and Bob start, after Alice and then Bob move, Bob is at a uniformly

random new vertex (for the coupling on Kn ) or a uniformly random vertex (for the coupling
on K∗

n ). Thus Bob’s walk has the correct distribution.
When the coupled walks are viewed backwards in time, the protocol is the same but with the

roles of Alice and Bob reversed. Thus Alice’s walk also has the correct distribution.

Note that when a = 2, the above coupling has minimum entropy, meaning that the entropy
of the coupling is equal to the entropy of a single walker. The coupling does not have minimum
entropy for a > 2; it can, however, be modified to have minimum entropy, at the cost of giving up
the Markovian property. Specifically, we can give each cluster the structure of a directed cycle and
insist that when Alice moves to Bob’s cluster, she chooses the site after Bob’s; and if she stays in
her own cluster, Bob copies Alice’s movement in his own cluster. To copy Alice’s movement, Bob
needs to remember where Alice was on her previous turn, which is why this modified coupling is
not Markovian.
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5 Monotonicity

The purpose of this section is to show that existence of avoidance couplings for k walkers on K∗
n

is monotone in n . We do not know whether the corresponding statement holds for the unlooped
case Kn , nor if we impose the Markovian condition or the minimum entropy condition.

Theorem 5.1. If there is an avoidance coupling of k walkers on K∗
n , then there is an avoidance

coupling of k walkers on K∗
n+1 .

The following concept will be useful for the proof. Suppose that k walkers walk on K∗
2 , taking

turns in cyclic order as usual, in such a way that no two walkers are simultaneously at vertex 1 (but
several walkers can be at 2), and so that the trajectory of any given walker is an i.i.d. Bernoulli
sequence that is 1 with probability p at each step. We call such a coupling a 1-avoidance coupling
of Bernoulli(p) walkers.

Lemma 5.2. If there is an avoidance coupling of k walkers on K∗
n , then there is a 1-avoidance

coupling of k Bernoulli(1/n) walkers.

Proof. Let any given Bernoulli walker be at 1 exactly when the corresponding walker on K∗
n is at

vertex 1.

Lemma 5.3. If there is a 1-avoidance coupling of k Bernoulli(p) walkers, then there is a 1-
avoidance coupling of k Bernoulli(q) walkers for all q < p.

Proof. We simply thin the process of 1s. Suppose we have a Bernoulli(p) coupling, and take an
independent process of i.i.d. coin flips, heads with probability q/p , indexed by turns (i.e. times at
which any walker is allowed to move). To get the Bernoulli(q) coupling, take a walker to be at 1
whenever the original walker is at 1 and the corresponding coin flip is heads.

Proof of Theorem 5.1. Suppose we have an avoidance coupling of k walkers on K∗
n . By Lemmas 5.2

and 5.3, there exists a 1-avoidance coupling of k Bernoulli(1/(n+1)) walkers. Take such a coupling,
independent of the original coupling on K∗

n . To get a coupling on K∗
n+1 , take a given walker to be

at the same vertex as the corresponding walker on K∗
n , unless the corresponding Bernoulli walker

is at 1, in which case take it to be at vertex n+ 1.

6 Linear number of walkers for special n

Theorem 6.1. There exists a minimum-entropy Markovian avoidance coupling for k walkers on
K∗

n for any k ≤ 2d and any n = 2d+1 or 2d+1 + 1, as well as on Kn for n = 2d+1 + 1.

Corollary 6.2. There exists an avoidance coupling for k walkers on K∗
n for any k ≤ n/4.

Proof. This is immediate from Theorem 6.1 and the monotonicity result, Theorem 5.1.
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Proof of Theorem 6.1. We begin with the case of 2d walkers, labeled 0, . . . , 2d−1 = ω on K∗
n

for n = 2d+1 or 2d+1 + 1. Let εit be independent uniform {±1} random variables. Let δt be
independent uniform {0, 1} random variables. Let the trajectory of walker j be denoted {Xj

t } .
Let

∑d−1
i=0 ji2

i be the binary representation of j , for 0 ≤ j ≤ ω . Given X0
t , the positions of

the other walkers are given by

Xj
t = X0

t +
∑

jiε
i
t2

i

where all positions are understood modulo n . We then define inductively

X0
t+1 = Xω

t + 2d + δt+1 .

We first show that this is indeed a coupling of random walkers. For all j , we have Xω
t =

Xj
t +

∑
(1−ji)ε

i
t2

i and so

Xj
t+1 −Xj

t = 2n + δt+1 +
∑[

(1−ji)ε
i
t + jiε

i
t+1

]
2i. (1)

Since (1−ji)ε
i
t+ jiε

i
t+1 is ±1 we find that the sum is uniform on the odd numbers in [−2d, 2d] , and

so Xj
t+1−Xj

t is uniform on [1, 2d+1] , as needed for the walk on K∗
2d+1 or on K2d+1+1 . The process

(Xj
t ) is Markov since the ε ’s and δ ’s used to define Xj

t+1 in terms of Xj
t in (1) are disjoint from

those used in any other time step. Note that the j th trajectory determines all the bits, so this is
also a minimum entropy coupling.

Next we establish avoidance. Let j < j′ be two walkers. We have

∆ := Xj′

t −Xj
t =

∑
(j′i − ji)ε

i
t2

i.

Note that |j′i − ji| ≤ 1, hence |∆| < 2d , and so ∆ = 0 mod n implies ∆ = 0. If i0 is minimal
such that ji0 ̸= j′i0 then ∆ is divisible by 2i0 but not by 2i0+1 , and so is non-zero. Thus there are
no collisions within any round. Between consecutive rounds we have

∆ := Xj
t+1 −Xj′

t = 2d + δt+1 +
∑[

jiε
i
t+1 − (1−j′i)ε

i
t

]
2i. (2)

Let i1 be maximal such that ji1 ̸= j′i1 . Since j < j′ this implies ji1 = 0 and j′i1 = 1. We have

∣∣jiεit+1 − (1−j′i)ε
i
t

∣∣ ≤

1 i > i1,

0 i = i1,

2 i < i1.

Terms for i > i1 contribute at most 2d − 2i1+1 to the sum in (2). Terms for i < i0 contribute at
most 2(2i0 − 1). Thus

∆ ∈ [2 + δt+1, 2
d+1 − 2 + δt+1]

and so ∆ ̸= 0 mod n .
To see that this coupling is Markovian, note that X0

t is determined by Xω
t−1 and δt . Similarly,

X2i
t is determined by X0

t and εti , and all other walkers’ positions are determined by the positions
of the previous walkers in the round.
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We can reduce the number of walkers to any value between 2 and 2d by simply removing
walkers other than 0 and ω . The Markovian property is preserved if we first remove walkers whose
indices are not powers of 2.

Finally we turn to the case of k walkers on K∗
n for n = 2d+1 + 1. To do this we simply add to

the coupling on Kn rounds in which all walkers rest, beginning with walker 0. For the Markovian
property, we need to ensure that each walker j ̸= 0 can detect when walker 0 has decided to rest.
This is so because on Kn , given Xω

t , no vertex is a possible value for both X0
t and X0

t+1 (otherwise
X0

t+1 , which depends only on Xω
t and δt+1 but not on X0

t , might stay in place).

We say that an avoidance coupling of k walkers stays in waves if, for some distinguished
walker w , whenever w stays in place, all the other walkers do likewise at the following k−1 turns,
while if w moves, all others do so too. (The coupling on K∗

2d+1+1
in the last proof stays in waves.)

Note that any Markovian avoidance coupling that stays in waves on K∗
n may be modified to obtain

a Markovian avoidance coupling on Kn by removing all the looping rounds.

7 Many walkers for general n

Theorem 7.1. There exists a Markovian avoidance coupling of k walkers on K∗
n for any k ≤

n/(8 log2 n), and on Kn for any k ≤ n/(56 log2 n).

The constants in this theorem can easily be improved. However, as noted below, our methods
will not go beyond n/(log2 n). To prove the theorem, we make use of two lemmas which allow us
to combine avoidance couplings.

Lemma 7.2. Suppose that we have avoidance couplings of r walkers on K∗
m and of s walkers on

K∗
n . Then there is an avoidance coupling of k walkers on K∗

mn , for any k satisfying r + s− 1 ≤
k ≤ rs . If the given couplings are Markovian, then so is the new coupling. If the given couplings
stay in waves, then so does the new coupling. If the given couplings are minimum-entropy, then the
new coupling is too.

Proof. We identify K∗
mn with K∗

m × K∗
n , and note that if Xt and Yt are independent random

walks on K∗
m and K∗

n respectively, then (Xt, Yt) is a random walk on K∗
mn . Given an avoidance

coupling {X i
t} of r walkers on K∗

m and an independent avoidance coupling {Y j
t } of s walkers on

K∗
n , we construct a coupling on K∗

mn of rs walkers with labels (i, j), for 1 ≤ i ≤ r and 1 ≤ j ≤ s .
The walkers move in lexicographic order. The trajectory of walker (i, j) is given by (Xi

t , Y
j
t ),

which as noted above is a random walk on K∗
mn . That the walkers avoid collisions follows from

the product construction and the collision avoidance of the given couplings. If the given couplings
are Markovian, then since the walkers on K∗

mn move in lexicographic order, the resulting coupling
is also Markovian. It is clear that the coupling stays in waves provided both original couplings do.
Finally, no randomness is required beyond that in the couplings on K∗

m and on K∗
n , so if they are

minimum entropy, so is the resulting coupling.
To construct a coupling of fewer walkers, just eliminate some of the walkers, as long as walkers

(i, 1) and (1, j) (for each 1 ≤ i ≤ r and 1 ≤ j ≤ s) are kept. All other trajectories are determined
by those, so the Markov property is maintained.
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We remark that a variant of the above construction can be used to combine an avoidance
coupling of r walkers on Km and an avoidance coupling of s walkers on K∗

n that stays in waves
to produce an avoidance coupling of rs walkers on Kmn .

Lemma 7.3. Suppose we have avoidance couplings for k walkers on Km and on Kn (respectively,
K∗

m and K∗
n ). Then we have an avoidance coupling for k walkers on Km+n (respectively, K∗

m+n ).
If the original couplings are Markovian then so is the resulting coupling.

Proof. Partition the vertex set of Km+n into two clusters U and V of sizes m and n , respectively.
We will ensure that when it is the first walker’s turn, all of the walkers are in the same cluster.
At each of her turns, the first walker flips an appropriately biased coin to decide whether to move
within her current cluster or to switch to the other cluster. If she stays in her current cluster she
moves according to that cluster’s coupling rules, and so do the rest of the walkers. If she switches
to the other cluster, she moves to a uniformly random vertex therein. Each subsequent walker now
chooses a random k -walker configuration in the new cluster (say, V ) consistent with the walkers
that are already in V , in accordance with the stationary distribution on configurations of the Kn

(or K∗
n ) coupling arising just before a move of the first walker. He then moves to his allotted space

in this configuration.

Proof of Theorem 7.1. We begin with the case of K∗
n . By Theorem 6.1 and Lemma 7.2 we have a

Markovian avoidance coupling for k ≤ 2d walkers on K∗
n where n = 2a+1(2d−a+1+1) = 2d+2+2a+1

for any a ≤ d , as well as n = 2d+1+1, 2d+2+1, and 2d+1 .
For general n =

∑
ni2

i , ni ∈ {0, 1} , we write

n =
∑
i≤d

ni(2
d+2 + 2i) + r

where 2d+1|r . If r ≥ 0 and n ̸= 0, then Lemma 7.3 provides a Markovian avoidance coupling for
K∗

n ; this inequality indeed holds whenever

n ≥
∑
i≤d

(2d+2 + 2i) = (d+3
2)2

d+2 − 1 .

Now any n ≥ 8 satisfies (d+2)2d+2 ≤ n < (d+3)2d+3 for some integer d ≥ 0. Thus the above
gives a Markovian avoidance coupling for any number of walkers up to 2d . By the first inequality,
8 × 2d ≤ n , so d+3 ≤ log2 n , which combined with the second inequality gives 2d > 1

8n/(d+3) ≥
n/(8 log2 n), which proves the theorem for K∗

n for n ≥ 8. The claim of the theorem is trivial for
n < 8.

We now turn to the case of Kn (without loops). Recall that if we have a Markovian avoidance
coupling on K∗

n that stays in waves, then removing the looping rounds yields such a coupling on
Kn .

Fix d ≥ 1, and let S be the set of values of n for which Markovian avoidance couplings exist
on K∗

n for every number of walkers up to 22d−1 , all of them staying in waves. By Lemma 7.3, S
is closed under addition. From Theorem 6.1, we see that S contains 2c+1 for all c ≥ 2d . Using
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Theorem 6.1 and Lemma 7.2, when a ≥ 1, b ≥ 1, and a+b ≥ 2d+1, there is a Markovian avoidance
coupling for n = (2a+1)(2b+1) with x 2b−1 − y walkers, where 1 ≤ x ≤ 2a−1 and 0 ≤ y < 2b−1 .
In particular, S contains (2a+1)(2b+1), and specifically S contains 22d+1 + 1 + 2i + 22d+1−i for
all 1 ≤ i ≤ d (and also for i = 0 using Theorem 6.1 and Lemma 7.3).

For any m < 2d+1 we write m =
∑

i≤dmi2
i with mi ∈ {0, 1} , and denote by m̂ =

∑
mi2

d−i

the number with reversed binary expansion. Then for m ̸= 0, S contains∑
i≤d

mi(2
2d+1 + 1 + 2i + 22d+1−i) = ∥m∥(22d+1+1) +m+ 2d+1m̂,

where ∥m∥ :=
∑

mi denotes the Hamming weight of m . For simplicity (at the expense of the final
constant) we eliminate the dependence on Hamming weight: since ∥m∥ ≤ d+1 and 22d+1+1 ∈ S
we have

(d+1)(22d+1+1) +m+ 2d+1m̂ ∈ S (3)

(which holds also for m = 0). In the same way, but using 22d+2 +1+2i +22d+2−i instead, we find
that

(d+1)(22d+2+1) +m+ 2d+2m̂ ∈ S. (4)

Write m′ = 2d+1−1−m =
∑

(1−mi)2
i , and observe that m̂′ = m̂′ . Using (3), together with (4)

with m′ in place of m , and adding, we get k0 + 2d+1m̂′ ∈ S where k0 = (3d+5)22d+1 + 2d + 1.
Adding another copy of (3) we find that k1+m ∈ S , where k1 = (d+2)22d+3− 2d+1+3d+2. Since
the last two statements hold for all values of m < 2d+1 , we may combine them to deduce, for any
m0,m1 < 2d+1 , that

k2 + 2d+1m1 +m0 ∈ S,

where
k2 = k0 + k1 = (7d+13)22d+1 − 2d+1 + 5d+ 3.

It follows that [k2, k2+22d] ⊆ S , and since 22d+1 ∈ S , any integer at least k2 is in S . Thus for
any n ≥ 7(d+2)22d+1 , there is a Markovian avoidance coupling for any number up to 22d−1 walkers
on Kn . Given n , choose d so that 7(d+2)22d+1 ≤ n < 7(d+3)22d+3 . From the second inequality
we have 22d−1 > n

7×16(d+3) . From the first inequality we have 2(d+3) ≤ log2 n− log2(7(d+2))+5 ≤
log2 n (provided d ≥ 3). But d ≥ 3 for any n ≥ 7(3+2)22×3+1 = 4480. So for n ≥ 4480 we can
couple up to n

7×8 log2 n
walkers on Kn .

Since there exists a Markovian avoidance coupling of 8 walkers on K17 and on K33 , such
a coupling also exists on Kn for any nonzero n = 17a + 33b with a, b ≥ 0. This includes all
n > 511 = 33 × 17 − 33 − 17, and implies the claim for 512 ≤ n ≤ 4480 (since 4480

56 log2 4480
< 8).

Finally, the claim is trivial for n ≤ 511 since n
56 log2 n

< 2.

We combined the number-theoretic avoidance coupling from Theorem 6.1 with the sum and
product lemmas to obtain an avoidance coupling with Ω(n/ log n) walkers for any n . Given these
three ingredients, this general-n construction is in a sense best possible up to constants. More
precisely, we argue below that these three ingredients cannot be combined to obtain a coupling of
more than n/∥n∥ walkers on Kn or K∗

n , where ∥n∥ is the Hamming weight of n .
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By the distributive law, any coupling that can be constructed using the sum and product lemmas
7.3 and 7.2 can be done by taking sums of products of basic constructions. Consider the product
of s basic couplings of 2dj walkers on either 2dj+1+1 or 2dj+1 vertices. Note that ∥ab∥ ≤ ∥a∥∥b∥ .
The product lemma gives a coupling of 2d walkers on Km or K∗

m , where d =
∑

dj and m ≥ 2d+s

and ∥m∥ ≤ 2s . In particular m ≥ 2d∥m∥ . Next suppose that n is the sum of several such product
terms, say n =

∑
imi , each corresponding to the same d . Then n ≥ 2d

∑
i ∥mi∥ ≥ 2d∥n∥ . In

particular the number of walkers is at most n/∥n∥ .
Thus, to improve on the Ω(n/ log n) bound for general n , more ingredients would be needed.

8 Negative result

In the negative direction, we have very little.

Theorem 8.1. No avoidance coupling is possible for n−1 walkers on K∗
n , for n ≥ 4.

Proof. We exploit the effect that it is difficult for a walker to leave a vertex v at one step and then
immediately return to v at the next step. This requires that none of the other walkers enter v in
the interim. But since v is the only available vertex for a move, this means that all other walkers
must remain stationary.

Let Ai
t be the event that the ith walker is in the same position at times t−1 and t+1, but in

a different position at time t . Let Bi
t be the event that the ith walker is in the same position at

times t−1 and t .
Suppose an avoidance coupling exists. From the observation in the first paragraph, the events

A1
t and A2

t are disjoint, and each of them implies the event B3
t . Since each walker individually

performs a random walk, the events A1
t and A2

t have probability (n−1)/n2 , so that the probability
of B3

t must be at least 2(n−1)/n2 . But the probability of B3
t should be exactly 1/n , which is less

than 2(n−1)/n2 . This gives a contradiction, as required.

9 Open Problems

We have barely scratched the surface of avoidance coupling in this work; in particular we have
considered only complete graphs and concentrated on discrete, alternating, Markovian couplings.
Even in this limited realm, many intriguing open questions remain:

1. Maximum number of walkers. Is there an avoidance coupling for a linear number of
walkers on the unlooped complete graph Kn for general n? Can upper bounds of the form
cn for c < 1 be found for the maximum number of walkers that can be avoidance-coupled on
Kn or K∗

n? Ditto for Markovian couplings?

2. Monotonicity in n. If there is an avoidance coupling for k walkers on Kn , must there
necessarily be one for k walkers on Kn+1? Similarly in the Markovian case, for either Kn

versus Kn+1 or K∗
n versus K∗

n+1 .

3. Monotonicity in k . If there is a Markovian avoidance coupling for k walkers on Kn (or
K∗

n ), is there one for k−1 walkers on the same graph? The answer is “yes” for non-Markovian

11



couplings, since the k th walker can be imagined. The answer is “yes” for the Markovian
couplings that we exhibited, but it is not clear if this holds in general.

4. Monotonicity in loop weights. Suppose that Kn is equipped with loops of weight w , so
that a walker loops with probability w/(w+n−1). If there is an avoidance coupling for k
walkers on Kn with loops of weight w , must there be one with loops of weight w′ , where
w′ > w? The answer is “yes” for non-Markovian couplings, but what about the Markovian
case? In particular, is the maximum number of Markovian avoiding walkers always at least
as great on K∗

n as it is on Kn?

5. Minimum entropy couplings. Does existence of an avoidance coupling imply existence of
a stationary avoidance coupling whose entropy equals that of a single random walk?

6. 1-avoidance. What is the largest p for which k i.i.d. Bernoulli(p) sequences can be coupled,
taking turns to move as usual, so that no two simultaneously take the value 1?
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