Faster Generation of Shorthand Universal
Cycles for Permutations

Alexander Holroyd!, Frank Ruskey?*, and Aaron Williams?

! Dept. of Computer Science, University of Victoria, CANADA
2 Microsoft Research, Redmond, WA, USA

Abstract. A universal cycle for the k-permutations of (n) = {1,2,...,n}
is a circular string of length (n)x that contains each k-permutation ex-
actly once as a substring. Jackson (Discrete Mathematics, 149 (1996)
123-129) proved their existence for all & < n — 1. Knuth (The Art of
Computer Programming, Volume 4, Fascicle 2, Addison-Wesley, 2005)
pointed out the importance of the k = n — 1 case, where each (n — 1)-
permutation is “shorthand” for exactly one permutation of (n). Ruskey-
Williams (ACM Transactions on Algorithms, in press) answered Knuth’s
request for an explicit construction of a shorthand universal cycle for
permutations, and gave an algorithm that creates successive symbols
in worst-case O(1)-time. This paper provides two new algorithmic con-
structions that create successive blocks of n symbols in O(1) amortized
time within an array of length n. The constructions are based on: (a)
an approach known to bell-ringers for over 300 years, and (b) the recent
shift Gray code by Williams (SODA, (2009) 987-996). For (a), we show
that the majority of changes between successive permutations are full
rotations; asymptotically, the proportion of them is (n — 2)/n.

3243 3243 » 143
%> <, "> <, w” <,
o b Y oo >
i O O B R O I
e “aperiodic” — e «ogllex” = “erroneous” “
<« W o« w o ~
e X ' Q 7 X
V\ 2 / v’lz 2 /
™ > o >
~ b) woN (d) W
— “bell-ringer” - — “direct” =~
< %) X [O¥)
& ‘S <
Loyl Loy

Fig. 1. (a)-(d) are Ucycles for IT3(4), or equivalently shorthand Ucycles for I1(4). The
symbol 4 is periodic in (b)-(e) since it is in every nth position. (e) is not a Ucycle for
I13(4) due to two types of errors: an erroneous substring 242, and an extra copy of 142.

* Research supported in part by NSERC

2 Holroyd, Ruskey and Williams

1 Introduction

A undversal cycle (or Ucycle) [1] is a circular string containing every object of
a particular type exactly once as substring. For example, consider the circular
string in Figure 1(a). Starting from 12 o’clock, and proceeding clockwise, its
substrings of length three are

432,321,214, 142, ..., 413,132, 324, 243. (1)

In total there are 24 substrings, and these substrings include every 3-permutation
of (4) exactly once. For this reason, Figure 1(a) is a Ucycle for the 3-permutations
of (4). Let IIx(n) denote the set of all k-permutations of (n). Notice that
|[ITi(n)] = (n)g :=n(n —1)---(n — k + 1) (the falling factorial). In the spe-
cial case k = n, we use II(n) to represent the permutations of (n). Jackson
proved that Ucycles of II;(n) exist whenever k < n [4]. On the other hand, the
reader may easily verify that Ucycles of IT(n) do not exist when n > 3.

This section describes four additional interpretations for Ucycles of IT,,_1(n),
then discusses applications, relevant history, and outlines our new results.

1.1 Interpretations and Applications

For the first interpretation, notice that |IT,—1(n)| = np,—1 = n! = |II(n)|. Each
(n—1)-permutation of (n) extends to a unique permutation of (n) by appending
its missing symbol from (n). For example, the first string in (1) is 432, and it is
missing the symbol 1. Thus, the substring 432 is shorthand for 4321. Similarly,
the substrings in (1) are shorthand for the following permutations

4321, 3214, 2143, 1423,4213, .. ., 2413, 4132, 1324, 3241, 2431. (2)

For this reason, Ucycles for II,,_1(n) can be interpreted as Ucycles for permu-
tations called shorthand Ucycles for II(n). The substrings comprising I7,,—1(n)
are the Ucycle’s substrings, and the extended strings comprising IT(n) are the
Ucycles’s permutations. This leads to the remaining interpretations.

The second interpretation is the binary representation. Given a length n — 1
substring in a shorthand Ucycle for IT(n), the next symbol is the symbol that
follows this substring in the shorthand Ucycle, and the next substring is the
length n—1 substring that ends with this next symbol. That is, if s1s2---s,—11sa
substring in a shorthand Ucycle for IT(n), then the next symbol is some = € (n),
and the next substring is 283 -« - $p,—12. Since 283 - - - Sp—1 is in IT,,_1(n), then
there are only two choices for x. Either x is s1, or z is the missing symbol from
5182+ Sp—1. This dichotomy gives rise to the binary representation. The ¢th
bit in the binary representation is 1 if the substring starting at position i has
its next symbol equal to its first symbol; otherwise the next symbol equals its
missing symbol and the ith bit in the binary representation is 0. The binary
representation can be visualized by placing two copies of the shorthand Ucycle
for (n) above itself, with the second copy left-shifted (n — 1) positions. This
comparison vertically aligns the first symbol of each length n substring with its

Faster Shorthand Universal Cycles 3

next symbol. Accordingly, 1s are recorded precisely when the vertically aligned
symbols are equal. This is illustrated below for Figure 1(a), where 4 denotes the
first symbol in the shorthand Ucycle (above) and in its rotation (below).

432142134234123143124132
142134234123143124132432
001100011000101100100011

To check the binary string, notice that its first bit is 0. This is because the first
substring is 432, and its first symbol 4 does not equal its next symbol 1. On
the other hand, the third bit in the binary string is 1. This is because the third
substring is 214, and its first symbol 2 equals its next symbol 2. (As above, the
shorthand Ucycle for IT(n) is assumed to “start” with n (n—1) --- 2.)

The third interpretation is a Gray code for permutations. If p1ps---p, is a
permutation in a shorthand Ucycle for IT(n), then the next permutation begins
with pops - - pp—1. Therefore, the next permutation is either paps - - - pn—1PnpP1
Or P2p3 - - Pn—1D1Pn- Lhese cases are obtained by rotating the first symbol of
p1p2 - - - Pr into one of the last two positions. More precisely, if the ith bit in the
binary representation is 0 or 1, then the ith permutation is transformed into the
(i +1)st permutation by the rotation o, = (12 - n) orop—1 = (12 -+ n—1),
respectively. Thus, permutations in a shorthand Ucycle for IT(n) are in a circular
Gray code using o, and o,_1. For example, the first bit in the binary string
representation for (2) is 0, so o4 transforms the first permutation in (2), 4321,
into the second permutation in (2), 3214. Conversely, every circular Gray code
of IT(n) using o, and ¢,,_1 provides a shorthand Ucycle for IT(n) by appending
the first symbols of each permutation.

The fourth interpretation is an equivalence to Hamiltonian cycles in the di-
rected Cayley graph on IT(n) with generators o,, and o,_1 (see [7]).

The binary representation provides a natural application for shorthand Ucy-
cles of IT(n): n! permutations are encoded in n! bits. The Gray code interpreta-
tion also provides applications. The rotations o, and ¢,,—; can also be described
respectively as prefiz shifts of length n and n — 1. Prefix shifts of length n and
n — 1 can be performed as basic operations within linked lists or circular arrays.
In particular, a prefix shift of length n simply increments the starting position
within a circular array, whereas a prefix shift of length n — 1 increments the
starting position and then performs an adjacent-transposition of the last two
symbols. This is illustrated below with permutation 123456 (below left) being
followed by 234561 or 234516 (below right).

must be

\ 4
(U@ (D@ (62
© followed by © (D or D ©
© OXCO

4 Holroyd, Ruskey and Williams

1.2 History

Ucycles for combinatorial objects were introduced by Chung, Diaconis, and Gra-
ham [1] as natural generalizations of de Bruijn cycles [2], which are circular
strings of length 2™ that contain every binary string of length n exactly once
as substring. They pointed out that Ucycles of II(n) do not exist, and sug-
gested instead using order-isomorphism to represent the permutations. A string
is order-isomorphic to a permutation of (n) if the string contains n distinct
integers whose relative orders are the same as in the permutation.

Knuth suggested the use of what we call shorthand-isomorphism, and asked
for an explicit construction [5]. An explicit construction was discovered by Ruskey-
Williams [7], who also provided an algorithm that creates each successive symbol
in the Ucycle (or bit in the binary representation) in worst-case O(1)-time. The
construction has the property that the symbol n appears in every nth position
in the Ucycle. For this reason, it is said to have a periodic symbol. See Figure
1(d) for the construction when n = 4, and notice that 4 appears in every 4th po-
sition. (Figure 1(a) illustrates that shorthand Ucycles of IT(n) do not necessarily
contains a periodic symbol, and it is also obvious that a shorthand Ucycles of
II(n) can contain at most one periodic symbol when n > 3.)

When a shorthand Ucycle for II(n) has n as its periodic symbol, then its re-
maining symbols are divided into blocks of length n — 1. Furthermore, each block
must be a distinct permutation of (n—1). Given this situation, the permutations
of (n — 1) are called the sub-permutations. Figure 2 summarizes the substrings,
permutations, binary representation, and sub-permutations of Figure 1(d).

substrings: 432,321, 214,142, ... q,% 14 33
permutations: 4321, 3214, 2143, 1423, . ..
binary representation: 001 - - -

%A‘23v
Elz’v\

periodic symbol: 4 Q
sub-permutations: 321, 213,132,312, 123, 231 /5 b7 g\

Fig. 2. The direct construction for n = 4.

Given this terminology, there is a succinct description of the construction in
[7]: The permutations for n are the sub-permutations for n+ 1. For example, the
Ucycle for n = 3is 321312, and so the permutations are 321,213,132, 312, 123, 231.
Notice that the permutations are identical to the sub-permutations found in
Figure 2. For this reason, the construction in [7] can be described as the direct
construction. The binary representation of the direct construction also has a nice
description. If zjxs - - -z, is the binary string representation for n, then

00172 210012 Ty - - - 001" 2 Ty (3)

is the binary string representation for n + 1, where &; = 1 — z;, and 1772
represents n — 2 copies of 1. For example, the binary representation for n = 2 is

Faster Shorthand Universal Cycles 5

00, and so the binary representation for n = 3 and n = 4 are 00 0 00 0 = 001001
and

001 0 001 0 001 1001 0 001 0 001 1= 001100110010001100110010.

1.3 Our New Approach

This paper expands upon [7] by providing two additional constructions. Our
first construction is based on a technique from change-ringing (English-style
church bell ringing). The general method (involving “half-hunts”, in change-
ringing terminology) is more than 300 years old (see [3,8]), but we believe that
our application of it to the Ucycle problem is novel. See Figure 1(b).

The second construction uses the recently discovered shift Gray code of
Williams [9], which generalizes cool-lex order. Aside from the intrinsic inter-
est of having additional answers to Knuth’s query, both of these constructions
have two distinct advantages over the previous construction found in [7].

First, the constructions have fewer 1s in the binary representations. The
bell-ringer algorithm is particularly advantageous in this regard since the vast
majority of bits are 0 (Theorem 3); asymptotically, the proportion of them is
(n—2)/n.

Second, the resulting algorithms are faster in the following scenario: Suppose
an application wants a shorthand Ucycle for the permutations of {1,2,...,n}.
Since n! is prohibitively large, the shorthand universal is given to the application
n symbols at a time within an array of length n. Our new algorithm updates this
array in average-case O(1)-time. In other words, it provides successive blocks of
n symbols in constant amortized time. This is an improvement over the previous
algorithm [7], which would have required {2(n)-time to obtain the next n symbols.

Sections 2 and 3 describe these new constructions. In both cases the strategy
is to generate a list of I7(n) that will become the sub-permutations for a short-
hand Ucycle for IT(n + 1). When proving that the result is in fact a shorthand
Ucycle for IT(n + 1), we use the following definition and notation.

Definition 1. Let P = p1,pa,...,pn be a list of permutations. By R(P) we
denote the cyclic string (n+1)p1(n+1)p2 - - - (n+1)pnr. The list P is recyclable if
R(P) is a shorthand universal cycle for the permutations of (n+1).

Figure 1(e) illustrates that not every order of IT(n) is recyclable. Theorem 1
proves that its two types of “errors” are the only obstacles to being recyclable.

Theorem 1. A circular list of permutations P = p1,pa, ..., pn 18 recyclable if
and only if the following two conditions are satisfied.

— If a and B are successive permutations, then a;l — ﬁ;l <1 for alli € (n).
— If a and B are two successive permutations and o’ and ' are also two suc-
cessive permutations, then whenever there is a j € (n) such that

0<j+1"'0¢nﬁ1"'3j—1Za;‘+1"'a;31"'ﬁ;_17

then a = o (and hence 8 = 3').

6 Holroyd, Ruskey and Williams

Proof. Let X = R(P) = (n+1)p1(n+1)pa - - - (n+1)pn. The first condition guar-
antees that any n successive symbols from X are distinct; that is, they are all
n-permutations of (n+1). The condition says that no symbol in the successor
moves left more than one position (it could move right).

The second condition will guarantee that all of the length n substrings of X
are distinct. Since the length of X is obviously (n+1)!, this will finish the proof.
Let w be a substring of X of length n. Clearly, if w does not contain n+1 then it
is distinct, since in that case we must have w = p; for some 7. If w contains n+1,
then w = a1+ an(n+1)B81 - Bj—1 for some value of j € (n) and successive
permutations « and (. If w is not distinct, then there would be some other two
permutations o’ and (' such that w’ = o/ -y, (n+1)87 -+ B, 0

2 The Bell-Ringer Construction and 7-order

In order to describe the bell-ringing-inspired Ucycle, we introduce an order-
ing of the permutations of (n) that we call “seven order” and denote 7-order.
It is a recursive method in which every permutation 7 of (n—1) is expanded
into n permutations of (n) by inserting n in every possible way into 7. These
insertions are done in a peculiar order that is reminiscent the way the num-
ber seven is normally written, and is what inspires us to call it 7-order. That
is, the first permutation is nm, the second is 7mn, and the remaining permuta-
tions are obtained by moving the n one position to the left until it is in the
second position. We use the notation 7, to denoted the 7-order of (n). Thus
79 = 21,12 and 73 = 321,213,231,312,123,132 and the first 4 permutations of
74 are 4321, 3214, 3241, 3421.

Theorem 2. The list 7, is recyclable.

Proof. We use Theorem 1. The first condition is clearly met by 7,,. To verify the
second condition, our strategy is to show that every symbol in « is determined
by Bi---Bj—1 and a;i1---oy,. First note that either n is in aj4q--- o, or it
isin B1---fj—1. f nisin a1 - oy, then o = B1 -+ - Bj_12a41 - - - oy, Where
z =M \{B1,.--,Bj-1,%+1,...,an}. f n = Bg is in By -+ Bj_1, but n # Bi,
then o = 81+ Be—1Bk+1nBry2 - -+ fj—1T0j1 - - - ap. If B = n then the result
follows by induction. a

We define the bell-ringer order to be the order of permutations obtained by
recycling 7,.

2.1 The binary interpretation of bell-ringer order

In this subsection we infer the recursive 0/1 structure of R(7,). Since the ns are
n apart, every nth and (n + 1)st bit is 0. (This is because ns1s3---sp—1 € II(n)
and s182---$p—1n € II(n) when s182---$,_1 is a sub-permutation.) We thus
may think of the 0/1 string as having the form

T(n) = 00 B(n); 00 B(n)2 00 --- 00 B(n)m-1),

Faster Shorthand Universal Cycles 7

where |B(n);| = n — 2. The initial 0 represents the o, that takes n(n —1)---21
to (n—1)---21n. We will now describe how to get T (n + 1) from 7(n).

We use several strings which are defined below. We omit n from the first two
notations since it will be clear from context. Let

A=1""2% Z,=0"""210"1 and X,_1= A00Z,00Z500---00Z, _s.

3

Note that |A] = |Zx] = n —2 and | X,| = (n — 1)(n — 2). Given 7'(n), the 0/1
string for n + 1 is

T(n+1) = 00 X, 00 1B(n); 00 X,, 00 1B(n)s 00 --- 00 X, 00 1B(n)(_1)-

Here are the bitstrings for 7'(4) and 7'(5), where the initial case is 7(3) =
001001 =00 B(3); 00 B(3)s. First, 7'(4) = 00 11 00 01 00 11 00 11 00 01 00 11,
which can also be written as 7(4) = 00 A 00 Z; 00 1B(3); 00 A00 Z; 00 1B(3)2 =
00 X5 1B(3); 00 X200 1B(3). And T(5) is

00 111 00 001 00 010 00 111 (=00 A 00 Z; 00 Z3 00 1B(4); = 00X3001B(4);
00 111 00 001 00 010 00 101 (=00 A 00 Z; 00 Z5 00 1B(4)2 = 00X3001B(4),
00 111 00 001 00 010 00 111 (=00 A 00 Z; 00 Z5 00 1B(4); = 00X3001B(4)3
00 111 00 001 00 010 00 111 (=00 A 00 Z; 00 Z3 00 1B(4)4 = 00X30018(4)4
00 111 00 001 00 010 00 101 (=00 A 00 Z; 00 Z5 00 1B(4)5 = 00X3001B(4)5
00 111 00 001 00 010 00 111 (=00 A 00 Z; 00 Z5 00 1B(4)s = 00X3001B(4)g

Theorem 3. The number of 1s in 1'(n) is 2((n — 1)! —1).

Proof. If ¢, is the number of 1s then our recursive construction implies that
Cnt+1 = Cn +2(n —2)(n—2)! with ¢z = 2. The solution of this recurrence relation
is2((n—1)!—1). a

Asymptotically, this means that the relative frequency of o, _1 transitions is
about 2/n and the relative frequency of o, transitions is asymptotically (n—2)/n.
This answers an open question listed at the end of [7]; it asks whether there is a
Ucycle whose binary representation uses more 1s than 0s. The bell-ringer listing
clearly does so.

2.2 Iterative Rules

Now let us describe a rule for transforming one permutation of (n—1) in 7-order
into the next. This is useful for efficiently generating 7-order and the bell-ringer
shorthand Ucycle, as well as proving that it is indeed a Ucycle.

Let 8 = 182+ 8$p—1 € II(n — 1). Let h be the index such that s, = n — 1.
If h = 2, then let ¢ be the maximum value such that

s1 82 -+ 8; =81 (n—1) (n—2) -+ (n—i+1)

8 Holroyd, Ruskey and Williams

and let j be chosen to maximize the value of s; such that ¢ +1 < j <n —1.
(Notice that j is undefined when ¢ = n — 1, and otherwise j > i + 1.) The next
permutation in 7-order denoted 7(s) and is obtained from the following formula

8189 “Sh—28hSh—1Sh+18h+2" * *Sn—1 ifh>2 (4a)
8283 *85i818i425i42" " *S5j—2555j-15j415j42" " *Sn—1 if h=2& 81<’rL—i (4b)

5283 *Sp—181 otherwise. (4c)

To see why (4) generates 7-order, one can simply compare each of the cases to
the recursive definition of seven order:

— (4c) is performed when the largest symbol is in the first position of s, and
the result is the first symbol of s is moved into the last position;

— (4a) is performed when the largest symbol is in neither of the first two
positions of s, and the result is the largest symbol moves one position left;

— (4b) is performed when the largest symbol is in the second position, and the
result is that symbols sgs3 - - - s; move one position to the left by recursion,
and then the jth symbol moves one position to the left.

Algorithmically, successive iterations of (4) can be generated by a constant
amortized time (CAT) algorithm when s is stored in array. That is, the 7-order
for IT(n—1) can be generated in O((n—1)!)-time. To do this, one needs to simply
keep track of the position of the largest symbol in a variable h. More precisely,
given the value of h, (4c) is performed 1 - (n — 2)! times, and involves O(n — 1)
work each time. Similarly, (4a) is performed (n —2) - (n — 2)! times, and involves
O(1) work. Finally, (4b) is performed 1 - (n — 2)! times, and involves O(n — 1)
work each time. Therefore, the overall implementation O((n — 1)!)-time since

n-n=24+n-n=-2)+Mn-2)- n—-2)!=3n—-2-n—-2)! <4-(n—1)L
This proves the following theorem.

Theorem 4. 7-order for II(n—1) can be generated in O((n—1)!)-time when the
permutations are stored in an array. Using the same algorithm, the bell-ringer
shorthand Ucycle for II(n) can be generated in O((n — 1)!)-time when successive
blocks of length n are stored in an array (and the first element of the array is
fized at value n).

The iterative rule in (4) also allows us to state a simple iterative rule for
directly generating the permutations from the bell-ringer Ucycle.

Theorem 5. Let s = s182---8, € II(n) be a permutation in the bell-ringer
shorthand Ucycle for II1(n), where m is the maximum value of s1 and s,, and
k is the mazimum value such that n (n—1) --- k appears in the permutation
as a circular substring. If k —1 < m < n — 1, then the next permutation is
8983+ Sp—1818n. Otherwise, (if m = n or k —1 < m) the next permutation is
§9283 - 8pS1.

Proof. Omitted. a

Faster Shorthand Universal Cycles 9

3 Cool-lex Construction

This section discusses the cool-lex order for II(n) [9]. Given a permutation, a
prefiz left-shift moves the symbol at a given position into the first position of
the resulting permutation. This operation is denoted by < as follows

<](5152 <2 Sp,]) = 8578182 8j—18j4+15j+2" " Sn-

A prefix right-shift is the inverse operation and involves moving the symbol in
the first position into a given position. This operation is denoted by > as follows

l>(8182 cSp, j) = 8283 °:8j-15818j4+18j+2 " Sn-

Cool-lex order is generated by a single operation that is repeated over and
over again. The operation was originally stated in terms of prefix left-shifts, but
for the purposes of this document it will be useful to restate the definition in
terms of prefix right-shifts. Both the cool left-shift and cool right-shift involve
the notion of a non-increasing prefiz which is defined below.

Definition 2 (L). If s = s182...8, is a string, then the non-increasing prefix
of s is
—L(S) = S182° 85
where j is the mazimum value such that s;—1 > s; for all 2 < j <7L(s).
For example, 1.(55432413) = 55432 and 1(33415312) = 33.
Given a list of strings, the reflected list begins with the last string in the
original list and ends with the first string in the original list. In particular, the

reflected cool-lex order for IT(n) is generated by repeated applications of the
cool right-shift which is defined below.

Definition 3. Let s =s1---8, and 8’ = s383--- s, and k' = [1L(s")|. Then,

>(s, K +1) ifk <n—2and sy > spry1 (5a)

— / . /
cool(s) = ¢ (s, K +2) if k' <n—2and s1 < spr41 (5b)
>(s, n) otherwise (if k' >n—1). (5¢)

For example, cool circularly generates the following list of I7(3). These lists
for I(n) are denoted by C (n), as in C (3) = 321 213 123 231 312 132.

We now prove that C (n) becomes a universal cycle for IT,(n + 1) after
prefixing n + 1 as a periodic symbol. For example, when n = 3

C(3)= 321 213 123 231 312 132
R(C (3)) = 432142134123423143124132

and R(?(ES)) is a universal cycle for the 3-permutations of (4). In general, if £ is
a list of IT(n) then R(L) denotes the result of prefixing n+1 to every permutation
in £ and then concatenating the resulting strings together. Using this notation,
the main result can be stated as follows.

10 Holroyd, Ruskey and Williams

Theorem 6. The string R(?(n)) is a universal cycle for IT,(n + 1).

Proof. This result follows from a judicious application of Lemma 1, below, that
is stated informally as follows: For every value of j satisfying 0 < j < n — 1,

there are consecutive strings in C (n) that contain the last j symbols of p as a
prefix of one string, and the first (n — 1) — j symbols as a suffix of the previous
string. The rest of the proof is omitted due to space limitations. O

Lemma 1. If p € II,,_1(n) and j satisfies 0 < j < n — 1, then there exists
S = 8182 8p € II(n) followed by t = t1ta---t, € II(n) in ?(ﬁ) such that

8428543 " 'Sntltg s tj =p. (6)

In other words, there exist consecutive strings in ?(n) whose concatenation has
p as a substring. Moreover, the substring uses j symbols from the second string.

Proof. The proof of this technical lemma is omitted here. a

References

1. F. Chung, P. Diaconis, and R. Graham, Universal cycles for combinatorial struc-
tures, Discrete Mathematics, 110 (1992) 43-59.

2. N.G. de Bruijn, A Combinatorial Problem, Koninkl. Nederl. Acad. Wetensch. Proc.
Ser A, 49 (1946) 758-764.

3. R. Duckworth and Fabian Stedman, Tintinnalogia, 1668.

4. B. Jackson, Universal cycles of k-subsets and k-permutations, Discrete Mathemat-
ics, 149 (1996) 123-129.

5. D.E. Knuth, The Art of Computer Programming, Volume 4, Generating All Tuples
and Permutations, Fascicle 2, Addison-Wesley, 2005.

6. F. Ruskey, and A. Williams, The coolest way to generate combinations, Discrete
Mathematics, 309 (2009) 5305-5320. .

7. F. Ruskey and A. Williams, An explicit universal cycle for the (n—1)-permutations
of an n-set, ACM Transactions on Algorithms, in press.

8. A. T. White, Fabian Stedman: The First Group Theorist?, The American Mathe-
matical Monthly, 103 (1996) 771-778.

9. A. Williams, Loopless Generation of Multiset Permutations Using a Constant Num-
ber of Variables by Prefiz Shifts, Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA, January
4-6, 2009, pp. 987-996.

