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Abstract

Edge bundling reduces the visual clutter in a drawing of a graph by uniting the edges into bun-
dles. We propose a method of edge bundling that draws each edge of a bundle separately as in
metro-maps and call our method ordered bundles. To produce aesthetically looking edge routes,
it minimizes a cost function on the edges. The cost function depends on the ink, required to draw
the edges, the edge lengths, widths and separations. The cost also penalizes for too many edges
passing through narrow channels by using the constrained Delaunay triangulation. The method
avoids unnecessary edge-node and edge-edge crossings. To draw edges with the minimal number
of crossings and separately within the same bundle, we develop an efficient algorithm solving a
variant of the metro-line crossing minimization problem. In general, the method creates clear and
smooth edge routes giving an overview of the global graph structure, while still drawing each edge
separately and thus enabling local analysis.
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1. Introduction

Graph drawing is often used in information visualization for exploring and analyzing network
data. The core components of most graph drawing algorithms are the computation of positions of
the nodes and edge routing. In this paper we concentrate on the latter problem.

For many real-world graphs with substantial numbers of edges traditional algorithms produce
visually cluttered edge routes. The relations between the nodes are difficult to analyze by looking
at such drawings. Recently, edge bundling techniques have been developed in which some edge
segments running close to each other are collapsed into bundles to reduce the clutter [23, 28, 29].
While these methods create an overview drawing, they typically allow the edges within a bundle
to cross and overlap each other arbitrarily, making individual edges hard to follow. In addition,
previous approaches allow the edges to overlap the nodes and obscure their text or graphics [11,
19, 23, 29, 30].

IA part of the results of this paper was presented at the 19th International Symposium on Graph Drawing [38].
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Figure 1: (a) Visualizations of jazz graph with straight-line edges (left) and ordered edge bundles (right).
(c) An example of ordered edge bundles where edges walk around node labels.

We present a novel edge routing algorithm for undirected graphs that produces drawings in a
“metro map” style; see Figure 1. The graphs for which our algorithm is best applicable are of
medium size with a large number of edges, although it can process larger graphs efficiently too.

The input for our algorithm is an undirected graph with given node positions. These positions
can be generated by a graph layout algorithm, or in some applications (for instance, geographical
ones) they are fixed in advance. During the algorithm the node positions are not changed. The
main steps of our algorithm are similar to existing approaches, but with several innovations, which
we indicate with italic text in the following description.

Path routing. The edges are routed along the edges of some underlying graph and the over-
lapping parts are organized into bundles. One approach here has been to minimize the total “ink”
of the bundles. However, this often produces excessively long paths. For this reason we intro-
duce a novel cost function for edge routing. Minimizing this function forces the paths to share
routes, creating bundles, but at the same time it keeps the paths relatively short. Additionally,
the cost function penalizes routing too many edges through narrow gaps between the nodes. We
furthermore show how to route the bundles around the nodes.

Path construction. In this step the paths belonging to the same bundle are “nudged” away
from each other. The effect of this action is that individual edges become visible and the bundles
acquire thickness. Contrary to previous approaches, we try to draw the edges of a bundle as
parallel as possible with a given gap. However, such a routing may not always exist because of
the limited space between the nodes. We provide a heuristic that finds a drawing with bundles of
a suitable thickness.

Path ordering. To route individual edges, an order of the edge segments within each bun-
dle needs to be computed. This order minimizes the number of crossings between the edges of
the same bundle. The problem of finding such an order is a variant of the metro-line crossing
minimization problem. We provide a new efficient algorithm that solves this problem exactly.

The next section summarizes related work. In Section 3 we introduce the ordered edge bundling
algorithm, followed by the detailed explanation of its steps in Sections 4-6. Results of experiments
are presented in Section 7. We discuss some additional issues and future work in Section 8.
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2. Related work

Edge routing. The problem of drawing edges as curves has been considered in several visu-
alization papers. Such edges, with their smoother and organic shape, have an aesthetic appeal to
humans, who are known to prefer round shapes [3]. Curves can improve performance in some
typical graph reading tasks when compared to straight-line edges [20, 40, 42]. In some scenarios,
graph nodes have associated text labels, and curved edges are used to avoid node interiors; see
Figure 1(b). Dobkin et al. [14] initiated a visibility-based approach in which the shortest obstacle-
avoiding route for an edge is chosen. The method requires the computation of the visibility graph,
which can be too slow for graphs with hundreds of nodes. An improvement was suggested by
Dwyer and Nachmanson [17], achieving faster edge routing using sparse visibility graphs. The
latter method constructs approximate shortest paths for the edges. We use the method as the start-
ing point of our algorithm.

Dwyer et al. [16] proposed a force-directed method, which improves a given edge routing by
straightening and shortening edges that do not overlap node labels. However, a feasible initial
routing is needed. Moreover, the method moves the nodes, which is prohibited in our scenario.

The problem of finding obstacle-avoiding paths in the plane arises in several other contexts.
In robotics, the motion-planning problem is to find a collision-free path among polygonal obsta-
cles. This problem is usually solved with a visibility graph, a Voronoi diagram, or a combination
thereof [41]. Though these methods can be used to route a single edge in a graph, they do not
apply directly to edge bundling. Many path routing problems were studied in the very-large-scale
integration (VLSI) community. We use some ideas of [10, 12] as will be explained later.

Edge bundling. The idea of improving the quality of layouts via edge bundling is related to
edge concentration [35], in which a layered graph is covered by bicliques in order to reduce the
number of edges. Eppstein et al. [13, 18] proposed a representation of a graph called a confluent
drawing. In a confluent drawing a non-planar graph is visualized in a planar way by merging
together groups of edges, in the manner of railway tracks.

We believe that the first discussion of bundled edges in the graph drawing literature appeared
in [24]. There the authors improve circular layouts by routing edges either on the outer or on the
inner face of a circle. In that paper the edges are bundled by an algorithm that tries to minimize
the total ink of the drawing. Here we follow a similar strategy, but in addition we try to keep the
edges themselves short (among other criteria).

In the hierarchical approach of [28] the edges are bundled together based on an additional tree
structure. Unfortunately, not every graph comes with a suitable underlying tree, so the method
does not extend directly to general layouts. In [39] edge bundles were computed for layered
graphs. In contrast, our method applies to general graph layouts.

Edge bundling methods for general graphs are given in [7, 11, 19, 23, 29, 30, 31]. In the
force-directed approach [29] the edges can attract each other to organize themselves into bundles.
The method is not efficient, and while it produces visually appealing drawings, they are often
ambiguous in a sense that it is hard to follow an individual edge. The approaches [11, 31] have a
common feature: they create a grid graph for edge routing. Our method also uses a special graph
for edge routing, but our approach is different; we modify this graph to obtain better edge bundles.
Unlike the methods [11, 19, 23, 29, 30], we avoid edge-node overlaps.
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Recently there were several attempts to enhance edge bundled graph visualizations via image-
based rendering techniques. Colors and opacity were used to highlight the density of overlapping
lines [11, 28]. Shading, luminance, and saturation encode edge types and edge similarity [19]. We
focus on the geometry of the edge bundles only. The existing rendering techniques may be applied
on top of our routing scheme.

Path ordering. The problem of ordering paths along the edges of an embedded graph is
known as the metro-line crossing minimization (MLCM) problem. The problem was introduced
by Benkert et al. [5], and was studied in several variants in [1, 2, 4, 21, 22, 36]. We mention two
variants of MLCM that are related to our path ordering problem.

Asquith et al. [2] defined the so-called MLCM-FixedSE problem (also called MLCM-PA
in [36]), in which it is specified whether a path terminates at the top or bottom of its terminal
node. For a graph G = (V,E) and a set of paths P they give the algorithm with O(|E|5/2|P |3)
time complexity. A closely related problem called MLCM-T1, in which all paths connect degree-
1 terminal nodes in G, was considered by Argyriou et al. [1]. Their algorithm computes an op-
timal order of paths and has a running time of O((|E| + |P |2)|E|). Recently, Nöllenburg [36]
presented an O(|V ||P |2)-time algorithm for these variants of the MLCM problem. Our algo-
rithm can be used to solve both the MLCM-FixedSE and MLCM-T1 problems with complexity
O(|V ||P |+ |V | log |V |+ |E|). To the best of our knowledge, this is the fastest solution to date of
these variants of MLCM.

Crossing minimization problems have also been researched in the circuit design community [8,
26, 32]. Given a global routing of nets (physical wires) among the circuit modules, the goal is to
adjust the routing so as to minimize crossings between the pairs of the nets. In this context, a
problem similar to the path ordering problem was studied by Groeneveld [26], who suggested an
O(|V |2|P |)-time algorithm. Another method, which works for graphs of maximum degree 4, is
given in [8]. Marek-Sadowska et al. [32] considered the problem of distributing the set of crossings
among circuit regions. They introduced constraints for the number of allowed crossings in each
region, and provided an algorithm to build an order with these constraints. Their algorithm has
O(|V |2|P |+ |V |ξ3/2) complexity, where ξ is the number of path crossings.

3. Algorithm

In this section we introduce some terminology and give an overview of our algorithm. The
input to the edge bundling algorithm comprises an undirected embedded graphG = (V,E), where
V is the set of nodes and E is the set of edges. Each node of the graph comes with its boundary
curve, which is a simple closed curve. The boundary curves of different nodes are disjoint, and
the interiors they surround are disjoint too. The output of the algorithm is a set of paths P = {πst :
(s, t) ∈ E}, where for an edge (s, t) ∈ E, its path is referenced as πst; it is a simple curve in the
plane connecting the boundary curve of s with the boundary curve of t. The input also includes a
required path width for each edge and a desired path separation.

Step 1 of the edge bundling algorithm produces an initial routing of the paths. This routing is
done on an auxiliary graph G̃ called the routing graph. The edges of G̃ are straight-line segments
in the plane.
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Figure 2: Algorithm pipeline.

Step 2 improves the routing. Firstly, G̃ is cleaned up by removal of all its nodes and edges that
are not part of any path. Secondly, G̃ is modified to accommodate the paths together with the path
widths and separations, and to improve the paths.

In steps 1 and 2 we use a notion of ink similar to [24, 39]. Given a graph embedded in the
plane with straight-line edges, the ink I of a set of paths in the graph is the sum of the lengths of
the edges of the graph used in these paths; if an edge is used by several paths its length is counted
only once. A set of paths sharing an edge of the graph is called a bundle. It is important to note
that in the final drawing the paths in a bundle will be drawn as separate curves, so I does not
represent the amount of ink used in the final drawing.

Step 3. Consider a bundle with the shared edge (u, v) in G̃. We would like to draw the segments
of the paths that run along edge (u, v) as distinct curves parallel to (u, v). This requires ordering
of the paths of each bundle. Step 3 produces such an order for all bundles in a way that minimizes
crossings (which occur at the nodes).

Step 4 draws each path as a smooth curve using straight-line and biarc segments.
The overview of the algorithm is illustrated in Figure 2. Sections 4, 5, and 6 describe in detail

Steps 1,2, and 3, respectively. The final step (the construction of smooth curves) is performed as
the last operation of the process, although it is described in Section 5.1. This is necessary as the
structure of the final paths is important for understanding Step 2 of the algorithm.

4. Path Routing

In this section, we explain the first step of our algorithm – generation of the routing graph and
initial path construction.

4.1. Generation of the Routing Graph
As a preprocessing step, for each node s ∈ V , we create a convex polygon Os containing the

boundary curve of s in its interior. We keep the number of corners in Os bounded from above by
some constant. We call Os an obstacle, and build the obstacles in such a way that Os and Ot are
disjoint for different s and t. For each s ∈ V , we choose a point inside of the boundary curve of s,
which of course is inside of Os too, and call this point a center of Os; see Figure 3(a).

The algorithm starts with the construction of the routing graph G̃. Traditionally edge routing
is performed on the visibility graph [14] containing edges between every pair of visible obstacles
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Figure 3: (a) Boundary curves (solid black) of two nodes with its obstacles (dotted blue) and centers.
(b) (left) The routing without bundling; (center) edge routing with small ink; (right) edge routing with
larger ink but shorter paths.

corners; the routing is performed using shortest paths on the graph between corresponding obsta-
cles. Such graph may have quadratic number of edges and require quadratic time for construction,
which can be too slow, especially for interactive applications. We achieve faster routing using a
sparse visibility spanner, that is, a subgraph of the visibility graph approximately preserving short-
est paths. In our implementation, we utilize the so called Yao graphs [43], as they contain linear
number of edges and can be efficiently constructed [9, 17]. The vertices of G̃ comprise the obsta-
cle centers, the obstacle corners, and some additional vertices from the boundaries of Os. These
additional points are added to make G̃ rich enough for path generation. The points added to Os

have the property that each cone with the apex at the center of Os and with an angle given in ad-
vance contains at least one corner of Os or at least one new added point; see Figure 4(a). To build
the visibility edges of G̃ adjacent to node u, the node is surrounded by a family of cones covering
the plane with the apexes at u, and in each cone at most one edge is created by connecting u with
another node of G̃ which is visible from u, belongs to the cone, and is closest to u in the cone. The
angle of the cones is α = 30◦ and the cone axes are represented by vectors (cos(iα), sin(iα)) for
0 ≤ i ≤ 11 in our default settings. The method works in O(r log r) time and creates G̃ with O(r)

edges, where r is the number of vertices in G̃ [9, 17].
There are two types of edges in G̃: the visibility edges and the edges from the obstacle centers.

A visibility edge has both its ends belonging to the obstacle boundaries and it does not intersect
the interior of any obstacle. An edge of the second type is adjacent to an obstacle center. Such
an edge does not intersect the interior of any obstacle except of the one containing the center; see
Figure 4(a). We denote the set of nodes of G̃ by Ṽ and the set of edges of G̃ by Ẽ. By construction
r = O(|V |), and therefore G̃ has O(|V |) nodes and O(|V |) edges.

Further on, it is necessary for our method to keep the visibility edges of G̃ disjoint from the
obstacles. For this purpose after computing G̃, we shrink the obstacles slightly so that each obsta-
cle still contains its boundary curve, but the visibility edges do not touch or intersect the obstacles
anymore; see Figure 4(b).

Next we route the paths on G̃.

4.2. Routing Criteria and Routing Cost
In order to create bundles, we follow the idea of ink minimization [23, 24, 39]. However,

minimizing the ink alone does not always produce satisfactory results; some paths in a routing
with a small ink may have sharp angles or long detours as shown in Figure 3(b). We improve the
paths by introducing additional criteria.
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Figure 4: (a-b) A fragment of routing graph G̃: (a) the boundary curves are solid black, the obstacles are
dotted blue, the edges of G̃ are solid gray; (b) the obstacles are shrunk, so the visibility edges of G̃ do not
cross or touch the obstacles. (c) The solid curve represents a path, the long dashed opaque line segments
are the capacity segments crossed by the path, dotted line segments are the shrunk obstacles.

• Short Path Lengths. The length of a path πst is denoted by `st. One approach would be
to minimize the sum of `st. However, this gives insufficient weight to paths that connect
relatively close pairs of nodes. For this reason we instead consider the normalized lengths
`st/|st|, where |st| is the distance between the centers of Os and Ot. For a set of paths P ,
we define L =

∑
πst∈P `st/|st|.

• Capacity. We would like to avoid routing too many paths through a narrow gap. For this pur-
pose we adapt an idea of [10, 12], where capacities are associated with segments connecting
obstacles. To construct these segments, we compute the constrained Delaunay triangula-
tion [15] with the constrained edges being the obstacle sides. A Delaunay edge connecting
two different obstacles is called a capacity segment. We penalize for too many paths pass-
ing through a capacity segment.
Let us define capacity cσ of a capacity segment σ. Suppose σ connects points a ∈ A and
b ∈ B for obstacles A and B. Then cσ = (|a,B|+ |b, A|)/2, where |a,B| (|b, A|) is the dis-
tance from a to B (from b to A). While routing a path, we assign it to the capacity segments
intersected by the path; see Figure 4(c). For each capacity segment σ, we select all paths
assigned to σ and calculate routing width wσ as the total path widths plus the total path
separation. For example, if a segment σ is intersected by paths a, b, and c, then wσ is equal
to the path separation taken twice plus the sum of widths of a, b, and c. Capacity overflow
penalty of σ is computed as pσ = max(wσ − cσ, 0). The total capacity overflow penalty is
defined as C =

∑
σ pσ, where the sum is taken over all capacity segments.

Minimizing the ink, the paths lengths, and the capacity overflow penalty often is impossible at
the same time. For example, smaller ink usually leads to longer paths. The capacity penalty can
force some overlapping paths to go through different channels thus possibly increasing the ink.
Trying to satisfy all the criteria, we consider a multi-objective optimization problem: minimize
the routing cost of a set of paths P defined as

routing cost = kinkI + klenL+ kcapC.

We stress here that routing cost is used only in steps 1 and 2 of our algorithm. Steps 3 and 4
producing the final routing preserve the overflow penalty and try to preserve the path lengths. The
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notion of ink, as we define it, is not applicable to the final routing since the resulting paths are
drawn as separate curves. The choice of values of kink, klen, and kcap are discussed in Section 7.2.

4.3. Routing of Paths
We try to route the paths on G̃ with minimal routing cost. The problem is formulated as

follows.

Problem 1 (Path Routing). Given graph G̃ = (Ṽ , Ẽ) and a set of pairs of nodes {si, ti} ∈ Ṽ 2,
find paths between si and ti for all i so that routing cost is minimized.

Here si and ti correspond to the centers of obstacles connected by the edges ofG. Problem 1 is
NP-hard because its variant with kink = 1 and klen = kcap = 0 is the Steiner Forest problem [25].
The problem remains NP-hard in the case when kink = klen = 0 and kcap = 1. It is easy to see
that the latter variant is a generalization of the Edge Disjoint Paths problem [33], as one can assign
unit capacities for every edge of G̃ (so that only one path passes through an edge without overflow
penalty). Therefore, we suggest a heuristic to optimize routing cost. In this heuristic we solve an
easier task, where some paths are already known and we need to route the next path. We will route
it by minimizing an additional cost, which is the increment of routing cost associated with this
path. For a path πst, we define additional cost = kink ∆I + klen `st/|st| + kcap ∆C. Here, ∆I is
the increment in the ink, which is the sum of edge lengths of πst that were not part of any previous
path. Similarly, ∆C is the growth of

∑
σ pσ, where the sum is taken over all capacity segments

σ assigned to path πst; note that the non-zero terms in the sum correspond only to the segments
whose capacity is strictly less than the corresponding routing width.

Problem 2 (Single Path Routing). Given graph G̃ = (Ṽ , Ẽ) and a set of already routed paths
on G̃, find a path from s ∈ Ṽ to t ∈ Ṽ so that additional cost is minimized.

To solve the problem, for each edge e of G̃, we assign weight kink δe + klen `e/|st|+ kcap ∆Ce
to e. Here δe is `e if e is not taken by a previous path, and 0 otherwise. The value of ∆Ce is
the growth of

∑
σ pσ for the case the path is passing through e, where the sum is taken over all

capacity segments σ crossed by e. It can be seen that the minimum of additional cost is achieved
by a shortest path from s to t when we use these weights. We apply the Dijkstra’s algorithm to
find the path solving Problem 2.

To find a solution for Problem 1 (not necessarily the optimal one), we organize paths in a se-
quence {s1, t1}, . . . , {sm, tm}, and iteratively solve Problem 2 for {sk, tk}, with the paths {si, ti},
i < k already routed, for k = 1, . . . ,m. In our implementation, the paths in the sequence are taken
in the increasing order of the distances between the corresponding obstacle centers. Such an order
helps to connect close pairs of nodes with relatively straight curves. The routing of a single path
takes O(|Ẽ| log |Ṽ |) time with the Dijkstra’s algorithm. Hence, routing of all paths amounts to
O(|E||Ẽ| log |Ṽ |) steps.

Can we do better in this iterative approach than routing one path at a time? It turns out that we
can route optimally a set of paths with a common end, in the case when capacity component of
the routing cost is not taken into account (or equivalently, when the graph nodes are positioned far
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enough from each other). The result is interesting from theoretical point of view, as it shows that
the problem of routing edges with the minimum ink can be solved more efficiently (though the
variant is still NP-hard as noticed earlier). In the remaining of the section, we assume that all the
paths share a common end s∗ ∈ Ṽ , having degree d and neighbors t1, . . . , td, and that kcap = 0.
We define an additional cost of a set of paths by analogy with the additional cost of a path.

Problem 3 (Multiple Path Routing). Given graph G̃ with some paths already routed, find paths
for {s∗, t1}, . . . , {s∗, td} so that additional cost is minimized.

We solve this problem by a dynamic programming approach. We first fix a set of pre-existing
paths in G̃; additional cost will always be with respect to these paths. Let us call a state a pair
(v, P ), where v is a node of G̃ and P is a subset of {t1, . . . , td}. We need to solve our problem
for the state (s∗, {t1, . . . , td}). We reduce the problem to solving it for “smaller” states, that are
the states with fewer elements in P . For a state (v, P ), we define its cost f(v, P ) as minimal
additional cost of a set of paths {πvt : t ∈ P}. A set of paths giving the minimal value of f(v, P )
is called an optimal set for state (v, P ). Let us clarify the structure of an optimal set of paths.

By the subgraph generated by a set of paths in G̃, we mean the subgraph of G̃ comprising all
edges and nodes in the paths.

Lemma 1. For each state, there exists an optimal set of paths that generates a tree.

Proof : Let Π be any optimal set of paths for state (v, P ) and GΠ be the graph generated by
Π; note that GΠ is connected. Let T be a shortest path tree of GΠ, rooted at v, with respect to
ordinary edge lengths. Let Π′ be the set of paths connecting v to the points of P in T . Note that
additional cost of Π′ is at most that of Π. Indeed, the increment in I is no greater because T is a
subgraph of GΠ. Each path of Π′ is shortest in GΠ and thus no longer than the corresponding path
of Π. Hence, Π′ is an optimal set for (v, P ). �

Lemma 1 leads us to the following formula.

f(v, P ) = min

{
f(u, P ) + kink δvu + klen

∑
t∈P `vu/|s∗t|, for all u ∈ Ṽ adjacent to v,

f(v, P ′) + f(v, P − P ′), for all P ′ with ∅ ⊂ P ′ ⊂ P

The minimum is taken over both expressions on the right as u and P ′ vary. To verify this, we
consider some optimal set of paths for (v, P ) that form a tree, and split into two cases. The first
line corresponds to the case where u is the only neighbor of v in the tree. The second line is the
case where v has at least two neighbors, thus the paths can be partitioned into two proper subsets
with no common edges.

Now we describe how to compute f(v, P ). Let us assume that f is known for all states
(u, P ′) for P ′ a proper subset of P . To compute f(v, P ), a new graph H is constructed with
G̃ as a subgraph. An edge e of G̃ has weight kink δe + klen

∑
t∈P `e/|s∗t| in H . We add a new

node h to H and connect it with all nodes of G̃. For every new edge (h, u), we assign weight
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Figure 5: An example for Problem 3 with kink = 2, klen = 1, kcap = 0, and |s∗t1| = |s∗t2| = 1. The goal
is to find paths πs∗t1 and πs∗t2 with minimal additional cost. (a) Graph G̃, weights `e for each edge e are
shown. (b) Constructed graph H with edge weights. (c) Optimal paths (blue) with additional cost = 17.

minP ′ f(u, P ′) + f(u, P − P ′), where P ′ varies over proper non-empty subsets of P ; see Fig-
ure 5. One can see that the required value f(v, P ) is the length of a shortest path from v to h in
graph H . We can compute it using the Dijkstra’s algorithm.

To solve Problem 3 we work bottom-up. We first compute all f(v, P ) with |P | = 1 and v is
a node of G̃, by the algorithm for Problem 2, where we find a path with minimal additional cost.
Then we compute the values f(v, P ) for each v and |P | = 2, . . . , d by creating the corresponding
graphs H . Finally, the answer for the problem is f(s∗, {t1, . . . , td}).

Let us discuss the running time. The main steps of the above algorithm are the construction
of graph H , and finding a shortest path on it with the Dijkstra’s algorithm for each state (v, P ).
Luckily, graph H depends only on the P component of a state. The construction of graph H for
a fixed set P takes O(2|P ||Ṽ |) time. We execute the Dijkstra’s algorithm only once per P starting
from h to compute f(v, P ) for all v ∈ Ṽ . Thus, finding f(v, P ) for a known H and for all v ∈ Ṽ
takes O(|Ṽ | log |Ṽ |) time. Summing over all possible sets P gives

O
(∑

P

[
2|P ||Ṽ |+|Ṽ | log |Ṽ |

])
= O

( d∑
i=0

(
d

i

)[
2i|Ṽ |+|Ṽ | log |Ṽ |

])
= O

(
3d|Ṽ |+2d|Ṽ | log |Ṽ |

)
.

5. Path Optimization

In this section, we describe an optimization of G̃, which starts with removing all its nodes and
edges that are not part of any path. Then we modify G̃ and move its nodes to accommodate space
needed for drawing paths. First we provide details on how we draw the paths and define some
additional constructions on G̃.

5.1. Structure of the Paths
We call a node v ∈ Ṽ an intermediate node if it is not an obstacle center. Recall that a bundle

is a set of paths sharing the same edge of Ẽ. That means that as soon as the paths are routed on
G̃, the bundles become defined. In the final drawing we would like to draw the paths of a bundle
respecting the width and path separation and outside of the obstacles. As described in Section 4.1,
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Figure 6: (a) Structure of the paths in the final drawing. The circles represent the hubs of the intermediate
nodes and the rounded rectangles represent the hubs of the obstacle centers. The dashed path represents
segments π[uv], π[vw], and the hub segment. (b) A hub with not enough free space. (c) A biarc consisting
of two circular arcs with an identical tangent at the connecting point. (d) The hub radius should be large
enough so that α ≤ 90◦ and β ≥ path separation.

we shrink the obstacles after constructing G̃, therefore each intermediate node of Ṽ lies outside
the obstacles; an obstacle intersects an edge of Ẽ only if the edge is adjacent to the obstacle center.
To give a general idea of the final path structure, we refer to Figure 6(a).

We surround each node of G̃ by a simple closed curve. In the case of an obstacle center it is
the boundary curve of the node, and in the case of an intermediate node it is a circle disjoint from
the obstacles. We call these curves hubs and denote the hub of node v by hv. Each path π from
the bundle of edge (u, v) is represented by a straight-line segment connecting hu and hv, which is
called a bundle segment and denoted by π[uv]. The bundle segments of different paths are drawn
in a particular order, as discussed in Section 6 below. If path π passes through consecutive nodes
u, v, w, then we connect the segments π[uv] and π[vw] by a smooth curve called a hub segment.
The hub segment is constructed in a way that it is tangent to π[uv] and π[vw] and is contained in hv.
For the the hub segment, we use a biarc, that is, a smooth curve formed by two circular arcs with
a common point; see Figure 6(c). We follow the method of [37] to construct a biarc. Therefore,
in the final drawing each path is represented by a sequence of straight-line bundle segments and
biarc hub segments.

Next we give a heuristic that moves intermediate nodes of G̃ to find space for hubs and bundles.
Ideally, we would like to keep the hubs large enough to accommodate all the bundle segments with
their widths and separations. However, this is not always succeeded; see Figure 6(b).

5.2. Optimization Goals
We change positions of intermediate nodes of G̃ to provide enough space for drawing paths.

To this end, we compute how much free space we need around bundles and hubs. The ideal bundle
width for edge e, denoted by ew, is the sum of all path widths of the bundle, together with the total
of the separations between them. For example, for a bundle with three paths of widths 1, 2 and 2,
and a path separation of 1, the bundle width is 7.

On one hand, the radius of a hub for an intermediate node u should be large enough to accom-
modate all paths. We define a desired radius of a hub, which is the maximum over two values. The
first one is maxe µew, where the maximum is taken over all edges e ∈ Ẽ adjacent to u and µ is a
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positive constant, which is 1√
2

in our implementation. This guarantees that the angle subtended by
the arc of the hub corresponding to the bundle is at most 90 degrees; see Figure 6(d). In addition,
the desired radius is chosen so that any two bundles are separated before entering the hub by at
least the given edge separation; see Figure 6(d).

On the other hand, the radius of a hub should be small enough that: (a) the hub interior does
not intersect other hubs and (b) the hub is disjoint from the obstacles. We say that the hub of an
intermediate node u is valid if conditions (a) and (b) are satisfied, and in addition, for each edge
(u, v), the straight-line segment from the center of hu to the center of hv does not intersect any
obstacle (if v is an intermediate node) and intersects only obstacle Ov (otherwise). The routing
graph is valid if all intermediate hubs are valid.

Our optimization procedure finds a valid graph G̃while pursuing two objectives. First, the radii
of all hubs should be as close to the desired radii as possible. Second, we try to keep routing cost
of G̃ low.

5.3. Routing Graph Optimization
Let us denote by pv the position of node v of G̃. Before the optimization step we have G̃ in a

valid state. We find hub radii (perhaps very small) keeping G̃ valid, but we may not have enough
space for the hubs and the bundles. Equivalently, we may have hubs for which the desired radius
is larger than the actual one. The optimization starts by trying to move each such hub away from
obstacles into another valid position, where its radius is closer to the desired radius than before.
This is done in a loop, for which we initially set r to the desired radius of node v. A move is
attempted along the direction

∑
s us, where us =

−−−→
Ospv−−−−→
|Ospv |

and the sum is taken over all obstacles

s intersecting the circle of radius r with pv as the center. The length of the move is θr for some
fixed θ > 1, which is 1.2 in our implementation. If the new position of v is invalid, we reduce
r (dividing it by θ, in our implementation) and repeat the procedure. We stop processing a node
after 10 unsuccessful moves.

After this step we obtain more space for the paths, but routing cost is typically increased.
Therefore we again iteratively adjust the positions of intermediate nodes to diminish the cost.
Here we do no change the radii of the hubs. In one iteration we consider an intermediate node u
of G̃ and try to find a valid position pu, which maximally decreases routing cost. We assume that
our optimizations do not change the capacity segments crossed by each path; hence, we only try to
find the local minimum of ink and path lengths components of the cost. Consider the function rep-
resenting the contribution of node u to routing cost: f(pu) = kink

∑
v |pupv|+ klen

∑
πst

(|pupv|+
|pupw|)/|st|, where the first sum is taken over all neighbors of u and the second sum is taken over
all paths passing through nodes v, u, w. To minimize f(pu), we use the gradient descent method
by moving u along the direction kink

∑
v

−−−→pupv
|pupv | +klen

∑
πst

(
−−−→pupv
|pupv | +

−−−→pupw
|pupw|)/|st| using a small fixed

step size. If routing cost is reduced and the new position is still valid, we repeat the procedure;
otherwise, the move is discarded and we proceed with the next node. We pass a predefined number
of times over all nodes of the graph; this number is 10 in our implementation.

After this optimization procedure we also try to modify the structure of graph G̃, if it is ben-
eficial. We try the following modifications: (1) shortcut an intermediate node of degree two;
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(2) glue adjacent intermediate nodes together. These transformations are applied only if they re-
duce routing cost while keeping the graph valid.

What is the complexity of the above procedure? Let c be the time required to find out if a
circle or a straight-line segment intersects an obstacle. Using an R-tree [27] on the obstacles, one
can find out if a circle or a rectangle intersects the obstacles in O(c log |Ṽ |) time. The number of
edges in G̃ is |Ẽ|; therefore, an iteration optimizing the position of every node of G̃ can be done
in O(c|Ẽ| log |Ṽ |) time. Since we apply a constant number of iterations, this is also a bound for
the whole procedure.

6. Ordering Paths

At this point the routing is completed and the bundles have been defined. We draw the paths of
a given bundle parallel to the corresponding edge, therefore two paths may need to cross at a node
as shown in Figure 7. The order of paths in bundles affects crossings of paths. Some path crossings
cannot be avoided since they are induced by the edge crossings of G̃, while others depend on the
relative order of paths along their common edges, and thus may be avoided. We would like to
find the orders such that only unavoidable crossings remain. Let P be the set of simple paths in G̃
computed by path routing. We address the following problem.

(a) (b)

Figure 7: Graph G̃ with 4 terminal (squares) and 7 intermediate (circles) nodes. (a) An order with 6
crossings. (b) An optimal order with 3 crossings.

Problem 4 (MLCM). Given the embedded graph G̃ and a set of simple paths P , find an order of
paths for each edge of G̃ that minimizes the total number of crossings among all pairs of paths.

Problem 4 has been recently shown to be NP-hard [21]. However, in our setting paths satisfy an
additional property that makes it possible to solve the ordering problem efficiently. Let us describe
this property.

For a path (v1, . . . , vk) ∈ P , the nodes v1 and vk are called terminal and the nodes v2, . . . , vk−1

are called intermediate. In our setting, the paths terminate at the nodes of G̃ corresponding to the
centers of the obstacles. These are the only nodes that can be terminal for paths. The rest of the
nodes are intermediate. Thus we have:
Path Terminal Property: No node of G̃ is both a terminal of some path and an intermediate of
some path.

We consider the following variant of the crossing minimization problem.
13



Problem 5 (Path Ordering). Given an embedded graph G̃ and a set of simple paths P satisfying
the path terminal property, compute an order of paths for all edges of G̃ so that the number of
crossings between pairs of paths is minimized.

The problem is computationally equivalent to the existing variants of the metro-line crossing
minimization problems, MLCM-FixedSE and MLCM-T1. That is, an algorithm for Problem 5
can be used to efficiently construct solutions for the two variants [36].

We say that two paths having a common subpath have an unavoidable crossing if they cross
for every order of paths. An order of paths is consistent if only the pairs of paths with unavoid-
able crossings cross (and these only once). Clearly, a consistent order has the minimum possible
number of crossings. We will prove that a consistent order always exists, and we provide two al-
gorithms to construct one, solving Problem 5. The first algorithm is a modification of a method for
wire routing in VLSI design proposed in [26]. We call it the “simple algorithm” since it utilizes a
simple idea and it is straightforward to implement. The second is a new algorithm that has a better
computational complexity.

6.1. Simple Algorithm
To find an order of paths, we iterate over the edges of G̃ in any order and build the order for

each edge. Let Puv (Pv) be the set of paths passing through edge (u, v) ∈ Ẽ (node v ∈ Ṽ ). We fix
a direction of the edge and construct the order on it by sorting Puv. To define the order between
two paths π1, π2 ∈ Puv, we walk along their common edges starting from u until the paths end
or one of the following cases happen. (a) If we find an edge that was previously processed by
the algorithm, we reuse the order of π1 and π2 generated for this edge. (b) If we find a fork
node f (that is, the end of the common subpath of the two paths), then the order between π1 and
π2 is determined according to the positions of the next nodes of the paths following f , the path
turning to the left precedes the other one in the resulting order. (c) If such a fork node is not
found (which means that the paths end at the same node), we walk along the common subpath in
the reverse direction starting from node v, and again looking for a previously processed edge or a
fork. Note that the case when one path ends and the other one continues cannot happen due to the
path terminal property. The above procedure determines a consistent order for all pairs except of
the pairs of coincident paths; such paths are ordered arbitrarily on the edge.

It is easy to see that this ordering creates unavoidable crossings only. As mentioned earlier, the
above algorithm is a minor variant of one in [26]. The proof of correctness follows the same lines
as in [26]. Here we discuss the main differences between the two variants. First, for the sake of
simplicity, we do not modify the graph and the paths during computations. Second, in our setting
the nodes of G̃ may have an arbitrary degree; in particular, several paths may share an endpoint,
and thus the degree of the terminals is not bounded. That is why to compare two paths, we traverse
their common subpath in both directions. The running time of our algorithm is also different from
that in [26]. Our algorithm iterates over the edges of G̃ = (Ṽ , Ẽ), which takes O(|Ẽ|) time. For
each edge, it sorts paths passing through it. A comparison of two paths requires at most O(|Ṽ |)
steps (maximal length of a common subpath). Let |Pe| be the number of paths passing through
edge e ∈ Ẽ. The sorting on edge e takes O(|Ṽ ||Pe| log |Pe|) time. Since

∑
e∈Ẽ |Pe| = L, where L

is the total length of paths in P and |Pe| ≤ |P |, the algorithm runs in O(|Ṽ |L log |P |+ |Ẽ|) time.
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However, this is a pessimistic bound. Normally, the length of a common subpath of two paths is
much smaller than |Ṽ |, and the number of paths passing through an edge is smaller than |P |. That
makes the algorithm quite fast in practice.

The above algorithm is straightforward to implement. The following slightly more complicated
algorithm has a better asymptotic computational complexity.

6.2. Linear-Time Algorithm
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Figure 8: (i) Removal of intermediate node v; (ii) intervening steps; (iii) re-insertion of v. Paths of Pv
are numbered 1, . . . , 7 and are shown in braces when unordered, and then with placement indicating their
orders. The removal of v defines the order between paths 4 and 6 on edge (v, vd). The orders between paths
2 and 3 and between paths 5 and 7 were calculated in the intervening steps.

We assume that the clockwise order of edges around nodes of G̃ is given. The algorithm con-
sists of two phases. Each step of Phase 1 involves the deletion of a node of G̃; see Figure 8.
For each intermediate node v in turn, we do the following, which modifies graph G̃, the clock-
wise order of edges around the nodes of G̃, and the paths. Enumerate the edges incident to v as
e1, e2, . . . , ed in clockwise order, and let v1, . . . , vd be the corresponding nodes adjacent to v. Rep-
resent each path π ∈ Pv using edges ea and eb by an unordered pair {a, b}. For each pair {a, b},
add a new edge (va, vb). Modify the paths represented by {a, b} so that it goes directly from va to
vb using this new edge. The new edges incident to va, that is {(va, vb) : b 6= a}, should be inserted
into the clockwise order of va in the position previously occupied by ea. Finally, delete node v and
all adjacent edges from the graph.

In Phase 2 the process is inverted. Initially, all intermediate nodes have been deleted, and
we re-insert them in the reverse order to which they were deleted, adding orders of paths to the
edges in the process. Consider the re-insertion of node v. The new order of paths along edge ea is
obtained by concatenating the orders of paths along the edges {(va, vb) : b 6= a}.

Theorem 1. Given graph G̃ = (Ṽ , Ẽ), a set of simple paths P satisfying the path terminal prop-
erty, and a clockwise order of the edges around each node, the above algorithm computes a con-
sistent order of paths in O(|Ṽ |+ |Ẽ|+ L) time, where L is the total length of paths in P .

Proof : Correctness. Due to the path terminal property, removing an intermediate node from G̃
yields another graph satisfying the property. Hence, every step of the algorithm can be performed.
Note that at the end of the first phase, the graph consists of terminal nodes connected by (possibly
multi-) edges; all the paths consist of two nodes.
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Let us show that the order of paths computed by our algorithm is consistent. Indeed, the dele-
tion of node v may add a crossing between two paths π1 and π2 only when v is the last deleted node
of their common subpath. Suppose that π1 = (. . . , va, v, va′ , . . . ) and π2 = (. . . , vb, v, vb′ , . . . ). If
the clockwise order of nodes around v is · · · va · · · vb · · · va′ · · · vb′ · · · , then the removal of v cre-
ates a crossing between π1 and π2; the crossing is clearly unavoidable. Otherwise (if the clockwise
order around v is · · · va · · · va′ · · · vb · · · vb′ · · · ), the crossing is not created. The second phase of
our algorithm is straightforward and only concatenates the orders of paths; thus, it does not affect
the number of crossings.

Running time. In order to prove the computational complexity of our algorithm, we provide
details of the implementation. For the first phase, create a new graph H . Initially, H is the
subgraph of G̃ induced by the union of all the paths of P . Each path in P is stored as a list of
nodes in H . For an edge e of H , let Pe denote the set of paths containing e. We assume that for
every node v of H , the list of edges incident to v in clockwise order is given. Note that these lists
are dynamic since H undergoes deletions of nodes. We keep track of the deletions in a directed
acyclic graph F ; the graph is ordered, that is, the order of outgoing edges for every node of F is
important. Initially, F consists of isolated nodes corresponding to the edges of H . When a node
is deleted and an edge e is replaced by new edges, we add them in F as (direct) successors of
the node corresponding to e. Note that every new edge is a successor of exactly two nodes in F .
For instance, consider Pvcv containing paths 1,4,5, and 7 in Figure 8. When node v is processed,
set Pvcv is split into new subsets Pvcvd , Pvcve , and Pvcva . The clockwise order of the subsets is
important. Then we replace edge (vc, v) by edges (vc, vd), (vc, ve), and (vc, va) in graph H , in all
paths of Pvcv, and in the clockwise order of edges around vc. In graph F , the node corresponding
to edge (vc, v) gets three successors (in this order) corresponding to (vc, vd), (vc, ve), and (vc, va).
We stress that graphH may contain multiple edges after the operation, since there could be another
path from vc to any of vd, ve, or va; it is important to keep multiple edges and the corresponding
sets of paths separately. The first phase finishes when all non-terminals are deleted from H .

The time for treating node v (the deletion of v) is O(dv,H + |Pv|), where dv,H is the degree
of v in H at the current step and |Pv| is the number of paths passing through v. The bound can
be achieved utilizing radix sort with buckets corresponding to the neighbors of v. The sorting is
performed for all paths of Pv simultaneously, producing the clockwise orders of the created edges
around neighbors of v. Since dv,H ≤ dv,G̃ + |Pv|, the complexity of Phase 1 is O(|Ṽ |+ |Ẽ|+ L).

In the second phase, we process nodes of F in bottom-up order from successors to predeces-
sors. The list of paths for a node of F is simply the concatenation of the lists of its children. The
leaves of F correspond to the original paths of P . A concatenation of two lists is done in constant
time, as we do not copy the lists; hence, the total complexity of Phase 2 is O(|Ẽ|+ L). �

We note that the size of the input for Problem 5 is Ω(|Ṽ |+ |Ẽ|+ L), which is the same as the
running time of our algorithm if the clockwise order of edges around nodes is a part of the input. If
this order is not given in advance, the time complexity of the algorithm isO(|Ṽ | log |Ṽ |+|Ẽ|+L).
Since the length of a path does not exceed |Ṽ |, we have L = |Ṽ ||P |. Therefore, another estimate
for the running time is O(|Ṽ | log |Ṽ |+ |Ẽ|+ |Ṽ ||P |).
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6.3. Distribution of Crossings
Consistent orders are not necessarily unique. The choice of a particular one may greatly in-

fluence the quality of the final drawing [6, 22]. Arguably, the following property may appear
desirable. An order of paths is nice if it is consistent, and for any two paths, their relative order
along all their common edges is the same, that is, they may cross only at an endpoint of their
common subpath. We next analyze the existence of nice orders.

Lemma 2. If G̃ is a tree, then there is a nice order of paths P .

Proof : To build a nice order of paths on a tree, we use the algorithm described in Section 6.1
processing the edges in the following order. Choose any terminal node to be the root of the tree,
and then consider the edges starting at the leaves towards the root. The first time we encounter a
common edge of two paths will be at the end of their common subpath. Thus, the crossing between
them (if needed) will take place on an endpoint of that edge. To ensure that the crossing goes to
the endpoint of the subpath, we direct the considered edge towards the root of the tree. �

Unfortunately, for general graphs, there is an example having no nice order.

Lemma 3. There exists a graph G̃ with paths P that admits no nice order.

Proof : Consider a gadget with four paths shown in Figure 9. It consists of a black path, two blue
paths (called left and right blue path respectively) and a central red path. For every nice order, one
of the following conditions holds. Either the left blue path must be above the black path, or the
right blue path must be below the black path. Otherwise, if the left blue path is drawn below and
the right blue path is drawn above the black path, then red and black paths do not intersect nicely,
that is, their order along common edges is not the same. We use the property of the gadget to prove
the lemma.

Figure 9: The gadget and 3 ways to draw it.

Consider graph G̃ with 7 gadgets shown in Figure 10(a), where only black paths are shown.
Every black path starts and ends at leafs with the same number. The gadgets with a common
subpath share a blue path. For example, gadgets 1, 2, and 4 share a blue path, which is left for
gadget 1 and right for gadgets 2 and 4. Similarly, gadgets 2 and 3 share a blue path; the blue path
is left for gadget 2 and right for gadget 3. In total, graph G̃ contains 7 blue paths, 7 black paths,
and 7 red paths (one per gadget).

As noticed above, in a nice order either (a) the left blue path of gadget 1 is above its black
path, or (b) its right blue path is below the black path. In case (a), the right blue path of gadget
2 is above its black path; see Figures 10(b), where we mark the position of blue paths relative to
black paths by a blue dot. Then the left blue path of gadget 2 must be above its black path, using
the property of the gadgets. Since the blue path is also the right one for gadget 3, the left blue path
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of gadget 3 must be above its black path. Again, the blue path is the left one for gadget 4, and it
must below its black path. This contradicts to the property of the gadget for the right blue path of
gadget 4. Hence, case (a) is impossible.

In case (b), we similarly “propagate” the states of the gadgets and get a contradiction with the
left blue path of gadget 5; see Figures 10(c). This proves that there is no nice order of considered
paths on G̃. �
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Figure 10: (a) Graph G̃ consisting of 7 gadgets; each black path starts at a leaf marked by a number and
ends at a leaf with the same number. (b-c) Two possible cases: the blue dots mark the location of the
gadget’s blue paths.

Since in general a nice order may not exist, what is the best consistent order? We suggest to
distribute path crossings evenly among intermediate nodes of G̃. In other words, we propose to
avoid dense regions in the drawing with many crossings. To this end, we utilize the following
heuristic. The edges of G̃ in the simple algorithm are processed in the increasing order of the
number of paths passing through an edge. Note that the algorithm tries to realize all unavoidable
crossings on an endpoint of the considered edge; hence, processing first the edges with few paths
(and thus, few possible crossings) has the desired effect. Similarly, we delete the nodes of G̃ in the
linear-time algorithm in the decreasing order of the number of paths passing through a node.

7. Results

We implemented our algorithm in the MSAGL package [34], which is a part of Visual Studio
Ultimate 2012 and higher versions; see a real example produced in the programming environment
in Figure 1(b). Unfortunately, this version of MSAGL currently is not available for public. The
algorithm is implemented in C#; we run all experiments on a 3.1 GHz quad-core machine with
4GB of RAM. Edge bundling was applied for several real-world and synthetic graphs; see [39]
for a detailed description of our dataset. Unless node coordinates are available as a part of the
input, we used the MSAGL package to position the nodes. Table 1 provides statistics and some
measurements of the method on test graphs.

For the path routing step of our algorithm, we sort the graph edges based on the Euclidean
distance between the corresponding obstacle centers, and then use the Dijkstra’s algorithm to
route the edges one by one, as described in Section 4.3. The second step follows the description in
Section 5. For the path ordering, we implemented both methods presented in Sections 6.1 and 6.2.
By default, the simple algorithm is utilized, as we have not found any consistent visual difference
in the drawings produces by these two methods. We do not apply any crossing distribution strategy,
but we process the edges in the simple algorithm in the increasing order of the number of paths in
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Graph Source |V | |E| |Ṽ | |Ẽ| Routing Optimization Ordering Total

tail [39] 21 68 105 348 0.13 0.17 0.01 0.34
notepad [39] 22 113 198 776 0.03 0.29 0.01 0.35
airlines [11] 235 1297 1175 5297 0.47 2.67 0.15 3.32
jazz [44] 191 2732 955 4478 0.56 3.25 0.18 4.04
protein [44] 1458 1948 7290 32585 1.45 11.92 0.10 13.52
power grid [44] 4941 6594 24705 109779 7.97 18.01 0.18 26.31
Java GD’06 Contest 1538 7817 7690 32712 4.08 30.17 0.96 35.35
migrations [11] 1715 6529 8575 41451 3.89 30.57 1.16 35.75

Table 1: Statistics on test graphs and performance of the algorithm steps (in seconds).

a bundle. The final step, the construction of smooth curves, uses a straightforward implementation
described in Section 5.1 and follows [37] to construct biarcs.

7.1. Performance
Table 1 shows the CPU times of the main algorithm steps. Recall that the computational com-

plexity of the Routing, Optimization, and Ordering steps in our implementation isO(|E||Ẽ| log |Ṽ |),
O(|Ẽ| log |Ṽ |), andO(|Ṽ |2|E| log |E|+|Ẽ|), respectively. Since by construction Ṽ = O(|V |) and
Ẽ = O(|V |), it amounts toO(|V ||E| log |V |+|V | log |V |+|V |2|E| log |E|) = O(|V |2|E| log |E|)
in terms of the original input graph G = (V,E). However, this bound is too pessimistic.

As can be seen from the table, ordered bundles can be constructed for graphs with several
thousand of nodes and edges in less than a minute. For graphs of medium size with hundreds of
nodes, the algorithm can be applied in an interactive environment. Overall, this is slower than the
standard visibility-based approach [17] and some of the edge bundling techniques [19, 23], but
sufficient for drawing small and medium sized graphs improving the quality of single edge routes
when compared to existing methods.

The first step, Path Routing, is usually quite fast; it is less efficient for densely embedded
graphs in which the paths make long detours to avoid narrow channels between the obstacles. Al-
though Path Ordering has the worst time complexity among all the steps, it is the fastest step in
practice. The reason is that the theoretical worst case is rather unrealistic; in the real-world exam-
ples, two paths share only a short subpath and the number of path in a bundle is low. The most
time expensive step is Routing Graph Optimization. The explanation for its long running time is
twofold. Firstly, it continues to modify G̃ as long as it reduces routing cost, and we do not have
a good upper bound for the number of iterations. Secondly, the step utilizes a lot of geometric
operations such as checking an intersection between circles, polygons and line segments. These
operations are theoretically constant time but computationally expensive in practice. The opti-
mization of this step is the primary direction for the running time improvement of our algorithm.
For example, utilizing a specialized geometric library will likely improve the performance. The
last step of our algorithm, the construction of smooth curves for the paths, takes few milliseconds
for the graphs and are not included in Table 1.
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(a) (b)

Figure 11: Migration graph: (a) overview, (b) detail.

7.2. Selection of parameters
We describe the influence of the parameters in routing cost on the final drawing. The weight

of the ink component, kink, can be considered as the “bundling strength”, since larger values of
kink encourage more bundling. The path length component is complimentary and has the opposite
effect. The capacity component plays an important role for graphs with large and closely located
node labels (see for example the narrow channel between nodes S2 and S5 in Figure 13(b)). Based
on our experiments, we recommend selecting klen significantly larger than kink, otherwise some
paths can be too long. The capacity weight, kcap, is set larger by order of magnitude than the other
coefficients. In our default settings kink = 1, klen = 500, and kcap = 10(kink + klen).

We may also adjust the widths of individual paths and path separation; see Figures 1(b) and 13.
In the extreme case when the path separation and path widths are set to zero, we obtain a drawing
with overlapping edges.

7.3. Examples
We now demonstrate our ordered edge bundling algorithm on some real-world examples. The

migration graph used for comparison of edge bundling algorithms is shown in Figure 11. In our
opinion, on a global scale ordered edge bundles are aesthetically as pleasant as other drawings
of the graph (see e.g., [11, 23, 29, 31]). On a local scale, our method outperforms previous ap-
proaches by arranging edges and crossings between them. Arguably, the results of ordered edge
bundling are easier to analyze when one is interested in individual connections between graph
nodes; in that sense, our results are less ambiguous. A smaller example of edge bundling is given
in Figure 12. It shows another important advantage of our routing scheme. Multiple edges are
visualized separately making them easier to follow; compare the edge between nodes Editor and
Application on the original and bundled drawings. Note also that the edges never obscure node
labels, which is crucial in some applications.

7.4. Limitations
The main limitation of our approach is the computationally expensive routing graph optimiza-

tion step. We are not aware of a good method for choosing radii and positions for hubs. As the path
routing and the path optimization is done independently, sometime we do not utilize the available
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Figure 12: Tail graph: (a) standard routing computed with the visibility graph approach, (b) edge
bundling routing.

space in the best way. As a future work, we consider two directions for improving the heuristic.
One approach is to integrate the routing and optimization steps in order to get lower routing cost
and better space utilization. One requirement here is to keep the computational complexity of the
procedure low, as the algorithm is used in an interactive environment. Another approach concerns
the choice of the routing graph. For example, the greedy visibility spanner or a suitable refine-
ment of the Delaunay triangulation have certain geometric properties (e.g., large angles between
crossing/incident edges) that may simplify (or even make unnecessary) the path optimization step.

8. Conclusions and Future Work

We have presented a new edge routing algorithm based on ordered bundles that improves the
quality of single edge routes when compared to existing methods. Our technique differs from
classical edge bundling, in that the edges are not allowed to actually overlap, but are run in parallel
channels. The algorithm ensures that the nodes do not overlap with the bundles and that the
resulting edge paths are relatively short. The resulting layout highlights the edge routing patterns
and shows significant clutter reduction.

An important contribution of the paper is an efficient algorithm that finds a consistent order
of edges inside of bundles with the minimal number of crossings. As the consistent order with
the minimum number of crossings is not unique and a nice order may not exist, the question of
computing the “best” order remains open. For example, an edge is easy to follow if it has few
bends. Hence, an interesting question is how to visualize a bundled graph using the minimum
number of edge bends.

Another possible future direction concerns dynamic issues of edge bundling algorithm. First,
a user may want to interactively change a bundled graph or modify node positions. In that case,
a system should not completely rebuild a drawing, but recalculate affected parts only. Second, a
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Figure 13: (a) Standard edge routing produced with the visibility graph approach with many edge over-
laps. (b) No capacity overflow penalty, kcap = 0. (c) Small edge separation. (d) Large edge separation.
(e) Ordered edge bundling with the default settings.

small deviation of the algorithm parameters (e.g., ink importance kink) may theoretically involve a
full reconstruction of the routing, while a smooth transformation is preferable. Finally, in the cases
when the node positions are not naturally defined, it may be possible to allow small adjustments
of the given embedding in order to improve the routing.

From theoretical point of view, it would be interesting to further explore Problem 1. An ap-
proximation algorithm for the problem or one of its variants is a natural goal.
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