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Abstract. We propose a new approach to edge bundling. The approach starts by
routing the edge paths to minimize a weighted sum of the total length of the paths
together with the ink required to draw them. As this problem is NP-hard, we
provide an efficient heuristic that finds an approximate solution. Our approach
continues by separating edges belonging to the same bundle. To achieve this,
we provide a new and efficient algorithm that solves a variant of the metro-line
crossing minimization problem. The method creates aesthetically pleasing edge
routes that give an overview of the global graph structure, while still drawing
each edge separately, without intersecting graph nodes, and with few crossings.

1 Introduction
The core components of most graph drawing algorithms are computation of positions
of the nodes, and edge routing. In this paper we concentrate on the latter problem.

For many real-world graphs with substantial numbers of edges, traditional algo-
rithms produce visually cluttered layouts. The relations between the nodes are difficult
to analyze by looking at such layouts. Recently, edge bundling techniques have been
developed, in which some edge segments running close are collapsed into bundles to re-
duce the clutter. While these methods create an overview drawing, they typically allow
the edges within a bundle to cross and overlap each other arbitrarily, making individual
edges hard to follow. In addition, previous approaches allowed edges to overlap nodes,
thus obscuring their text or graphics.

We present a novel edge routing algorithm for undirected graphs, which we call
ordered bundles. This algorithm produces a drawing in a “metro-line” style (see Fig. 1).
The graphs for which our algorithm is best applicable are of medium size with a large
number of edges, although it can process larger graphs efficiently too.

The input for our algorithm is an undirected graph with given node positions. These
positions can be generated by a graph layout algorithm, or, in some applications (for
instance, geographical ones) they are fixed in advance. During the algorithm the node
positions are not changed. The main steps of our algorithm are similar to existing ap-
proaches, but with several innovations, which we indicate with italic text in the follow-
ing description.

Edge routing. In this step the edges are routed along paths, and the overlapping
parts are organized into bundles. One approach here has been to minimize the total ink
of the paths. However, this often produces excessively long paths. For this reason we
introduce a novel cost function for edge routing, a weighted sum of the ink and total
path length. Minimizing this function forces the paths to share routes, creating bundles,
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Fig. 1. Edge bundling example (jazz graph)

but at the same time it keeps the paths relatively short. We furthermore show how to
route the bundles outside of the nodes.

Edge nudging. In this step the paths belonging to the same bundle are “nudged”
away from each other. The effect of this action is that individual edges become visible,
and the bundles obtain their thickness. Contrary to previous approaches, we try to draw
the edges of a bundle as parallel as possible with a given gap. However, such a rout-
ing might not always exist because of the limited space between the node shapes. We
provide a heuristic that finds a drawing with bundles of suitable thickness.

Edge ordering. To route individual edges, an order of the edge segments inside
of the bundle needs to be computed. This order minimizes the number of crossings
between edges of the same bundle. The problem of finding such an order is related to
a variant of the metro-line crossing minimization problem called MLCM-PA [12]. We
provide a new efficient algorithm that solves this problem exactly.

The next section summarizes related work. In Section 3 we give a detailed expla-
nation of our algorithm. Results of experiments are presented in Section 4. Finally we
discuss some additional aspects and future work in Section 5.

2 Related work
We believe that the first use of bundled edges in the graph drawing literature is given
in [5]. The authors improve circular layouts by routing edges either on the outer or on
the inner face of a circle. Edges in that paper are bundled with an algorithm that tries to
minimize the total ink of the drawing. Here we follow a similar strategy, but in addition
we try to keep the edges themselves short.

In the hierarchical approach of [8], edges are bundled together based on an addi-
tional tree structure. Unfortunately, not every graph comes with a suitable underlying
tree, and it is not clear how to extend the method to general layouts. In [13] edge bundles
were computed for layered graphs. In contrast, our method applies to general graphs.

Edge bundling methods for general graphs are given in [1, 4, 9, 10]. In the force-
directed heuristic [9], edges can attract each other to organize themselves into bundles.
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The method is not efficient, and while it produces visually appealing drawings, they are
often ambiguous in a sense that it is hard to follow an edge. The approaches [1, 10] have
a common feature: they both create a grid graph for edge routing. Our method also uses
a special graph for edge routing, but our approach is different because we modify this
graph to obtain better edge bundles. Unlike [1, 4, 9] we avoid edge-node overlaps.

Recently there were several attempts to enhance edge bundled graph visualizations
with image-based rendering techniques. Colors and opacity were used to highlight the
density of overlapping lines [1, 8]. Shading, luminance, and saturation encode edge
types and edge similarity [14]. Our work is focused on the geometry of edge bundles
only. Existing rendering techniques can be applied on top of our routing scheme.

The paper [12] inspired us to apply the technique of metro-line routing to minimize
edge crossings inside bundles. Related work for orthogonal routings has been done
in [15]. The ordering step of [15] tries to orient the paths in a uniform pseudo-direction,
and if a path does not confirm to the direction, it is split. This is unnecessary, as our
method shows. We build thick edge bundles that avoid the nodes, as the fat edges of [2],
but we do not require the graph to be planar.

3 Algorithm

Let us establish some terminology. An undirected graph G is a pair (V,E), where V
is the set of nodes and E is the set of edges, i.e. unordered pairs of nodes. A drawing
of G is a representation of G in the plane in which each node v ∈ V is drawn as a
convex polygon pv , and each edge uv ∈ E is drawn as a simple curve connecting pu
and pv . We will call the node polygons obstacles (since our focus is edge routing), and
we assume that they are pairwise disjoint. Following [5, 13], the ink of the routing is
defined as the sum of the lengths of the line segments drawing the edge paths.

In overview, our algorithm takes the following steps (Fig. 2). We generate a routing
graph G̃ with straight-line edges that avoid the obstacles. We route the edges of G
through G̃. We will refer to an edge of G as a path in G̃. A set of paths sharing the
same edge of G̃ is called a bundle. After the initial routing, the paths of the same
bundle overlap on its edge. We estimate the space required to draw the paths separately,
and we modify the positions of G̃’s nodes, thus changing the paths’ geometry. Then we
order each bundle, and draw the paths individually with gaps, according to this order.
To complete the drawing, we smooth the paths by fitting Bezier segments into the path
corners. Next we give a more detailed description of the steps.
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Fig. 3. (a) The obstacles. (b) A visibility graph. (c) A refinement of the Delaunay triangulation.

3.1 Edge Routing
As we mentioned before, minimizing ink only often leads to extremely long paths that
are difficult to follow. Therefore, we try to minimize a novel cost function of path routes,
which takes both ink and path lengths into account:

routing cost = α ink + β
∑
uv∈E

`uv.

Here `uv is the length of path uv in the routing. We emphasize that ink is the total length
of the union of all the paths: where several paths overlap, their common part is counted
only once – in contrast, its contribution to the second term proportional to the number
of paths that use it. The non-negative real constants α and β determine the contribution
of the components to the function. In our default settings α = 1 and β = 500.

Problem 1 (Edge Routing). Given the graph G with fixed node positions, route the
edges of E in the plane so that routing cost is minimized.

Problem 1 is NP-hard, because its instance with α = 1, β = 0, and G being a
complete graph is equivalent to the Geometric Steiner Tree problem, which is known
to be NP-hard [6]. Therefore, we use an approximate solution, which starts with the
construction of a routing graph G̃.

Generation of the Routing Graph We consider two approaches to the routing graph
construction. The first one follows [3], which builds a sparse visibility graph (Fig. 3(b)).
The second approach is a refinement of the Delaunay triangulation, in which for each
two sides of a triangle that are not node polygon sides, we add the segment connecting
their midpoints (Fig. 3(c)). This creates routes in the middle of the “channels” between
the nodes. Both methods work inO(n log n) time, and create G̃withO(n) edges, where
n is the number of node polygon corners. In both cases the edges do not intersect the
node interiors. For each node v ∈ V , we add edges connecting the center of polygon pv
to its corners. We denote the set of nodes of G̃ by W , and the set of edges of G̃ by U .
We write |W | = n, and assume that G̃ contains O(n) edges. We will discuss the effect
of the routing graph choice to the final routing later. Next we route the paths on G̃.

Path Routing We try to route the paths on G̃with the minimal routing cost. The problem
can be formulated as follows.

Problem 2 (Path Routing). Given the graph G̃ and a set of pairs of nodes (ai, bi) ∈W 2,
find paths between ai and bi for all i so that routing cost is minimized.



Here ai and bi correspond to the centers of obstacles connected by the edges of
E. We stress that Problem 2 is different from Problem 1 in that the paths are now
constrained to be routed through the edges of G̃. The Problem 2 is again NP-hard,
because its instance with β = 0 is a Steiner Forest Problem [6]. Therefore we solve an
easier task, where some paths are already known, and we need to route the next path. We
will route it by minimizing an additional cost, which is the increment of the routing cost
associated to this path. For a path uv we define additional cost = α ∆ ink + β `uv .
Here ∆ ink is the increment in ink, which equals the sum of edge lengths of uv that
were not part of any previous path.

Problem 3 (Single Path Routing). Given the graph G̃ and a set of already routed paths,
find a path from a to b so that additional cost is minimized.

Let us assign the following weights to edges of G̃: the weight of edge e is equal
to α δe + β `e, where δe is `e if e is not taken by a previous path, and 0 otherwise. It
can be seen that the minimum additional cost is achieved by a shortest path from a to
b according to these weights. We can thus apply the Dijkstra algorithm to find a path
solving the Problem 3.

To solve Problem 2 approximately, we organize the edges of E in a sequence
(a1, b1), . . . , (am, bm), and iteratively solve Problem 3 for already routed paths (ai, bi),
i < k, and a = ak, b = bk for k = 1, . . . ,m. The routing of a single path takes
O(n log n) time with the Dijkstra algorithm in our settings, because the number of
edges in G̃ is O(n). All steps take O(|E|n log n) time.

Can we do better in this iterative approach than routing one path at a time? It turns
out that we can route optimally a set of paths with a common end, which will be an
improvement in some settings. We define an additional cost of a set of paths by analogy
with the additional cost of a path.

Problem 4 (Multiple Path Routing). Given the graph G̃with some paths already routed,
find paths for (a∗, b1), . . . , (a∗, bk) so that additional cost is minimized.

We can solve this problem by a dynamic programming approach. We first fix a set of
pre-existing paths in G̃; additional cost will always be with respect to these paths. Let
us call a state a pair (v, P ), where v is a node of G̃, and P is a subset of {b1, . . . , bk}.
We need to solve our problem for the state (a∗, {b1, . . . , bk}). We reduce the problem
to solving it for “smaller” states, that are the states with fewer elements in P . For a
state (v, P ) we define its cost f(v, P ) as the minimal additional cost of a set of paths
{(v, b), b ∈ P}. A set of paths giving the minimal f(v, P ) is called an optimal set for
state (v, P ). Let us clarify the structure of an optimal set of paths.

By the subgraph generated by a set of paths in G̃ we mean the subgraph of G̃
comprising all edges and nodes in the paths.

Lemma 1. For each state there exists an optimal set of paths that generates a tree.

Proof. LetΠ be any optimal set of paths for state (v, P ), andG′ be the graph generated
by Π , and note that it is connected. Let T be a shortest path tree of G′, rooted at v, with
respect to ordinary edge lengths. LetΠ ′ be the set of paths connecting v to the points of



P in T . The additional cost of Π ′ is at most that of Π . Indeed, the increment in ink is
no greater because T is a subgraph of G′. Each path of Π ′ is shortest in G′ and thus no
longer than the corresponding path of Π . Hence, Π ′ is an optimal set for (v, P ). ut
Lemma 1 leads us to the following formula.

f(v, P ) = min

{
f(u, P ) + α δ(uv) + |P | β `uv, for u ∈W adjacent to v,
f(v, P ′) + f(v, P − P ′), for P ′ with ∅ ⊂ P ′ ⊂ P

The minimum is taken over both expressions on the right as u and P ′ vary. To verify
this, we consider some optimal set of paths for (v, P ) that form a tree, and split into
two cases. The first line corresponds to the case where u is the only neighbor of v in the
tree. The second line is the case where v has at least two neighbors, thus the paths can
be partitioned into two proper subsets with no common edges.

Now we describe how to compute f(v, P ). Let us assume, that f is known for all
states (u, P ′), where P ′ is a proper subset of P . To compute f(v, P ), a new graph H is
constructed with G̃ as a subgraph. An edge e of G̃ has weight α δ(e)+|P | β `e inH . We
add a new node h to H and connect it with all nodes of G̃. For every new edge hu we
assign weight minP ′ f(u, P ′) + f(u, P − P ′), where P ′ varies over proper non-empty
subsets of P . One can see that the required value f(v, P ) is the length of a shortest path
from v to h in graph H . We can compute it with the Dijkstra algorithm.

To solve Problem 4 we work bottom-top. We first compute all f(v, P ) with |P | = 1

and v is a node of G̃, by the algorithm for Problem 3, where we find a path with the
minimal additional cost. Then we compute the values f(v, P ) for each v and |P | =
2, . . . , k by creating the corresponding graphs H . Finally, the answer for the problem is
f(a∗, {b1, . . . , bk}).

Running time. The main steps of the algorithm are the construction of graph H and
finding a shortest path on it with the Dijkstra algorithm for each state (v, P ). Luckily,
graph H depends only on the P component of a state. The construction of graph H for
a fixed set P takes O(2|P |n) time. We execute the Dijkstra algorithm only once per P
starting from h to compute f(v, P ) for all v ∈ W . Thus, finding f(v, P ) for a known
H and for all v ∈W takesO(n log n) time. Summing over all possible sets P produces

O
(∑

P

(2|P |n+ n log n)
)
= O(3kn+ 2kn log n).

To utilize the method solving Problem 4, we organize the paths into a sequence of
subsets of paths having a common end. We route the paths of the first element of the
sequence with the minimal additional cost, solving Problem 4. Then, using this routing
we solve Problem 4 for the second subset, using an updated additional cost function,
and so on. To avoid a long running time we need to keep the path subsets small. We
experimented with k = 5, 10, and the results are shown in Section 4.

In practice, we set routing cost = α ink+β
∑

uv∈E
`uv

duv
, where duv is the Euclidean

distance between the nodes u and v. This way we penalize the relative growth of path
lengths to avoid long paths for short edges.

3.2 Local Adjustments and Spline Routing

To save space we omit some details in this section. Routing the paths through G̃ defines
the bundles. In the final drawing we would like to draw the paths of a bundle in a
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Fig. 4. (a) Desired radius (b) Allowed radius (c) Paths intersecting at a node

particular order, as will be explained in Section 3.3, while keeping them at a predefined
distance from each other, and outside the obstacles. For this we need to have some
free space around the edges of G̃. To provide the free space, we surround each node of
G̃ by a circle, called a hub, with the center at the node position, and each edge by a
rectangle, that are disjoint from the obstacles (Fig. 4(b)). In the final drawing every path
is represented as a sequence of line segments and cubic Bezier segments, where each
line segment is contained in a rectangle, and each cubic Bezier segment is contained in
a hub (Fig. 4(c)). Such a path does not intersect the obstacles. To draw a Bezier segment
inside of a hub, we place each control point of the segment inside of the hub; since a
circle is convex, and a Bezier segment is contained in the convex hull of its control
points, this keeps the segment inside the hub.

Hub Radii Calculation The radius of a hub is defined as the minimum of two radii: a
desired one, and an allowed one. The calculation of the desired radius can be explained
with Fig. 4(a). We would like a hub to be large enough to accommodate an incoming
bundle by keeping angle φ at most π/4. We also would like to keep two bundles sep-
arated before entering a hub by having distance q at least the given edge separation.
The allowed radius is explained with a help of Fig. 4(b). To keep two connected hubs
separated, we require (a) that r1 + r2 ≤ γd, for some 0 < γ < 1, and (b) that each hub
does not intersect the obstacles.

Local Optimization To be able to route thick bundles without overlapping the obsta-
cles, we first apply a heuristic preprocessing step before the local optimizations, in
which each node of G̃ participating in a path and belonging to an obstacle is moved
away from the obstacles. The routing cost usually becomes larger after this step, but we
obtain the necessary space around the paths. In order to minimize routing cost locally,
we next iteratively adjust the position of each node of G̃ by moving it in a random di-
rection and trying to diminish routing cost. We also try to glue some of the nodes of G̃
together, if it is beneficial. During these transformations, we pay attention to preserve
conditions (a) and (b) mentioned above. Let m be the number of the obstacles, and c be
the time required to find out if a circle or a rectangle intersects an obstacle. Using an
R-tree [7] on the obstacles, one can find out if a circle or a rectangle intersects the ob-
stacles in O(c logm) time. The number of edges in G̃ is O(n), therefore, a pass locally
optimizing the position of every node of G̃ can be done inO(cn logm) time. The Local
Optimization is the most expensive stage of the algorithm, since we proceed iterating as
long as we diminish routing cost, and we do not have a good upper bound for this step.



3.3 Ordering Paths
At this point the routing is completed and the bundles have been defined. We draw the
paths of a given bundle parallel to the corresponding edge, therefore two paths may
need to cross at a node as shown in Fig. 4(c). The order of paths in bundles affects
crossings of paths. Let P be the set of paths in G̃ computed by path routing. We address
the following problem.
Problem 5. Given the graph G̃ and a set of paths P , find an ordering of paths for each
edge of G̃ that minimizes the number of crossings.
In our setting, the paths terminate at the nodes of G̃ corresponding to the centers of the
obstacles, and these nodes cannot be intermediate points of paths. Thus we have:

Path Terminal Property: No node is both an endpoint of some path and an interme-
diate point of some path.
We call nodes that are endpoints of paths terminal nodes. Using an argument similar
to the proof of Lemma 1 we can assume that the paths P are simple and satisfy the
following property.

Path Intersection Property. The common nodes and edges of any two paths form a
path (which may be empty, or a single node).

a

b

c d

e
f

Fig. 5. Paths ac and de do not
cross, while paths ad and ce cross
once.

Ideally, every two paths either do not cross or cross
one time if needed (Fig. 5). An ordering of paths is
consistent if any two paths cross at most one node.
Clearly, if two paths cross once in some ordering,
they must cross in every ordering. Hence consistent
orderings have the minimum number of crossings.
However, consistent orders are clearly not necessarily
unique, and the choice of a particular one may greatly
influence the quality of final drawing. The following
property might appear desirable. A consistent order of
paths is nice if, for any two paths, their order along all
their common edges is the same (i.e. they may cross only at endpoint of their common
subpath). Unfortunately, we found an example of (G̃, P ) having no nice consistent or-
der. On the other hand, we prove that a consistent ordering always exists, and moreover
we provide an efficient algorithm to construct one. We consider the following problem.
Problem 6 (Path Ordering). Given the graph G̃ and a set of simple paths P satisfying
the path terminal and intersection properties, compute a consistent ordering of paths for
all edges of G̃.

Algorithm. Phase 1. A basic step of our algorithm is the deletion of a node of
G̃ (Fig. ??). For every non-terminal node v do the following. Let Pv be the set of
paths passing through v in set Pv . Number the edges incident to v as e1, e2, . . . , et in
clockwise order, and let v1, . . . , vt be the corresponding nodes adjacent to v. For every
path π ∈ Pv using edges ea and eb, represent it by pair (a, b). For each pair (a, b),
add a new edge (va, vb). Assign the paths labeled by (a, b) to this edge. The new edges
incident to va should be inserted into v′as clockwise order in the position previously
occupied by ea, in the order determined by the positions of vb. Finally, delete node v
from the graph and the paths.

Phase 2. After all non-terminal nodes have been deleted, we reverse the process
and undo the deletions, adding orders to the edges. Consider the deletion of v. The new
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Fig. 6. Removal of node v; intervening steps; re-insertion of v. Paths of Pv are numbered 1, . . . , 7,
and are shown in braces when unordered, and then with placement indicating their orders.

order of paths along edge ea is obtained by concatenating the orders of paths along the
edges {(va, vb) : b 6= a}.

Implementation. First, create a new graph H . Initially, H is the subgraph of G̃
generated by all the paths of P . Every path in P is stored as a list of nodes in H . For
every edge e, Le is a list of paths containing e. We assume that, for every node v of
H , the list of edges incident to v are given in the clockwise order. Note that these lists
are dynamic since H undergoes deletions of nodes. We keep track of the deletions in a
forest F . Initially, F contains isolated nodes corresponding to the edges of H . When a
node is deleted and an edge e is replaced by new edges, we add them in F as children
of the node corresponding to e. For instance, Ld,v contains paths 1,4,5, and 7 in Fig. ??.
When node v is processed, list Ld,v is split into new sublists Ld,e, Ld,a, and Ld,b. The
(clockwise) order of sublists is important. Then we replace edge dv by edges de, da,
and db in graph H and in order of edges around d. The first phase finishes, when all
non-terminals are deleted from H . In the second phase, we process each tree in F in
bottom-up order. The list of a node is simply the concatenation of the lists of its children.
The leaves of F correspond (one-to-one) to the paths of P .
Theorem 1. Given the graph G̃ = (W,U), a set of simple paths P in G̃ satisfying the
path terminal and intersection properties, and a clockwise order of the edges around
each node, an ordering of paths along edges of G̃ minimizing the number of crossings
can be computed in O(|W |+ |U |+ L) time, where L is the total length of paths in P .
Proof. Correctness. We need to show that the edge (va, vb) added in Phase 1 is new.
Indeed, if edge (va, vb) already existed, there would be a path passing from va to vb and
a path passing va, v, vb, which contradicts the path intersection property.

The ordering of paths computed by our algorithm is consistent since the split of
paths Pv makes only necessary crossings. Two paths π1 and π2 will produce a crossing
only when the last node of their common subpath is deleted and the clockwise order
of the nodes around v is · · · va · · · vb · · · va′ · · · vb′ · · · , where π1 = · · · vavva′ · · · and
π2 = · · · vbvvb′ · · · .

Running time. The time for processing node v (the deletion of v) isO(1+dv,H+sv),
where dv,H is the degree of v in H at the current step and sv is the number of paths
passing through v. The theorem follows since dv,H ≤ dv,G̃ + sv . ut
Overall, the complexity of the Ordering step is O(|E|n + n logD), where |E| is the
number of edges of the original graph G (the number of paths), n is the number of
nodes in G̃, and D is the maximum degree of G̃.
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|W | |U | k = 1 k = 5 k = 10 |W | |U | k = 1 k = 5 k = 10

tail 105 348 8.4 16.9 18.8 257 638 13.3 16.0 18.5

notepad 198 776 16.4 16.8 16.8 445 1122 16.9 17.0 17.0

airlines 1175 5297 61.3 62.4 63.3 2825 7076 61.3 62.1 62.7

jazz 955 4478 32.2 33.2 33.6 2297 5798 32.2 34.3 36.0

protein 7290 32585 16.2 16.2 17.3 17501 43676 15.5 16.6 17.1

power grid 24705 109779 1.0 1.5 – 59297 148280 0.1 0.1 –

Java 7690 32712 32.0 34.9 – 18461 46350 30.0 34.1 –

migrations 8575 41451 74.5 75.3 – 20585 51510 74.4 75.9 –

Table 1. The percentage of ink gain, 1−(routing cost of bundled graph)/(routing cost of straight edges),
of the proposed algorithm. For the cells with “–” running time exceeds 10 hours.

Graph |V | |E| source Visibility Routing Radii Optimizations Ordering Overall

tail 21 68 [13] 0.11 0.02 0.04 0.13 0.01 0.34

notepad 22 113 [13] 0.00 0.03 0.05 0.24 0.01 0.35

airlines 235 1297 [1] 0.16 0.31 0.17 2.50 0.15 3.32

jazz 191 2732 [16] 0.14 0.42 0.23 3.02 0.18 4.04

protein 1458 1948 [16] 0.57 0.88 0.48 11.45 0.10 13.52

power grid 4941 6594 [16] 1.86 6.11 1.15 16.85 0.18 26.31

Java 1538 7817 GD’06 Contest 0.59 3.49 1.37 28.80 0.96 35.35

migrations 1715 6529 [1] 0.50 3.39 1.38 29.19 1.16 35.75

Table 2. Performance of ordered edge bundling algorithm (in seconds).

4 Experimental Results
We implemented our algorithm in MSAGL tool [11]. Edge bundling was applied for
several real-world graphs (see Tables 1 and 2 for quick statistics). Unless node coordi-
nates are available, we used the tool to position the nodes. All our experiments were run
on a 3.1 GHz quad-core machine with 4 GB of RAM.

The quality analysis of ink minimization heuristics is given in Table 1. We compare
the ink gain of algorithms with two methods of routing graph construction. An iterative
approach with routing paths one by one corresponds to a k = 1 case. The results of
routing multiple paths at a time are shown for groups of size 5 and 10.

The variant of the algorithm that routes multiple paths with the same endpoint si-
multaneously produces routings with smaller routing cost, while its running time is
much longer (e.g. 4 seconds with k = 1, 2 minutes with k = 5, and 1.5 hours with
k = 10 for airlines graph). The approaches with different routing graphs are quite
similar in both routing cost minimization, and running time. Moreover, we could not
identify significant differences in the quality of final drawings. We believe it is a result
of Local Optimization step of our algorithm in which edge routes are shortened and
smoothed. Overall, we chose k = 1 with sparse visibility graph as a default settings for
our routing.

Table 2 shows the CPU times of algorithm steps. As can be seen, ordered bundles
can be constructed for graphs with several thousand of nodes and edges in less than a
minute. The most expensive steps are Local Optimization and Edge Routing.

We now demonstrate ordered edge bundling algorithm on real-world examples. A
migration graph used for comparison of edge bundling algorithms is shown in Fig. 7.
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Fig. 7. Migration graph. (a) Overview. (b) Detail.

In our opinion, on a global scale ordered edge bundles are aesthetically as pleasant as
other drawings of the graph (see e.g. [1, 4, 9, 10]). On a local scale, our result outper-
forms previous approaches by arranging edge intersections. A smaller example of edge
bundling is given in Fig. 8. It shows another advantage of our routing scheme. Multiple
edges are visualized separately making them easier to discover (compare the edge be-
tween nodes DrawingEditor and DrawApplication on original and bundled drawings).

5 Conclusions and Future Work

We have presented a new edge routing algorithm based on ordered bundles that im-
proves the quality of single edge routes when compared to existing methods. Our tech-
nique differs from classical edge bundling, in that the edges are not allowed to actually
overlap, but are run in parallel channels. The algorithm ensures that the nodes do not
overlap with the bundles and that the resulting edge paths are relatively short. The result-
ing layout highlights the edge routing patterns and shows significant clutter reduction.

In our opinion, the novel cost function can be considered as a quality measure for
different bundling heuristics. In a future, it would be interesting to verify if layouts with
smaller routing cost correspond to subjectively better images. We are also exploring a
possible extensions of the function to control the curvature of the resulting edges.

An important contribution of the paper is an efficient algorithm that finds an order
of edges inside of bundles with minimal number of crossings. As mentioned above, this
order is not unique. We left the question of choosing the best order as future research.

Our method splits the overlapped edge segments. The resulting edges has some
thickness, so the nudging step can be treated as a heuristic for drawing fat edges. The
main limitation of our technique is that routing and nudging steps are performed inde-
pendently. A minimal routing cost might correspond to a routing, where edges can not
be drawn with ideal thickness. In contrast, nudging step moves bundles, thus, increasing
ink and edge lengths. We plan next to combine these two steps.

Another possible direction for future work concerns dynamic issues of edge bundling
algorithm. First, a user may want to interactively change a bundled graph or change
node positions. In that case, a system should not completely rebuild a drawing, but re-
calculate affected parts only. Second, a small deviation of algorithm parameters (e.g.
ink importance α) may theoretically involve a full reconstruction of the routing, while
a smooth transformation is preferable.
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Fig. 8. Tail graph. (a) Original. (b) Bundled.
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A Non-existence of Nice Order of Paths

We show an example of G̃ and P such that any consistent ordering of P is not nice.
Consider a gadget with four paths shown in Fig. 9. Any consistent ordering satisfies the
property that the first (left) blue path must be above the black path or the second (right)
blue path must be below the black path. If the blue paths are drawn below (the first path)
and above (the second one) the black path, then red-black do not cross properly.

Fig. 9. The gadget and 3 ways to draw it.

Consider graph G̃ with 7 gadgets in Fig. 10, where only black paths are shown. The
gadgets are independent except (a) paths 1 and 4 share the blue path, and (b) paths 1
and 7 share the blue path. Either the first blue path for path 1 is above it or the second
one is below it. In the first case, the blue paths of gadget 4 do not satisfy the above
property, see Fig. 11 (a). Contradiction. In the second case, the blue paths of gadget 7
do not satisfy the above property, see Fig. 11 (b). Contradiction.
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Fig. 10. Graph G̃.
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Fig. 11. Two cases.



B Further Examples

(a) (b)

  java.nio.ByteBufferAsShortBufferRL  

  java.io.PushbackInputStream  

(c)

Fig. 12. Java graph. (a) Original. (b) Bundled. (c) Detail.


