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Cellular automata arise naturally in the study of physical systems,
and exhibit a seemingly limitless range of intriguing behaviour. Such
models lend themselves naturally to simulation, yet rigorous analysis
can be notoriously difficult, and can yield highly unexpected results.

Bootstrap percolation is a very simple model, originally introduced
in [13], which turns out to hold many surprises. Cells arranged in
an L by L square grid can be either infected or healthy. Initially, we
flip a biased coin for each cell, declaring it infected with probability
p. At each subsequent time step, any healthy cell with 2 or more
infected neighbours becomes infected, while infected cells remain in-
fected forever. (A cell’s neighbours are the cells immediately to its
North, South, East and West - interior cells have 4 neighbours while
boundary cells have fewer). See Figures 1 and 2.
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Figure 1: Bootstrap percolation on a square of size 5 at time steps
0, . . . , 6. Infected cells are shown by Xs.

How does the probability

I(L, p) := P(the entire square is eventually infected)

behave for large L? It is easy to guess that for p sufficiently large
we have I → 1 as L → ∞, since the infection can always invade
finite healthy islands. More surprisingly, it turns out that for any
fixed p > 0 we have I → 1 as L → ∞. This was the first rigorous
result in the subject, proved in [31]. The intuition is that certain rare
local configurations act as “nucleation centres”, which can spread to
infect any region (given a background of randomly infected cells), so
any square large enough to contain a nucleation centre will become
entirely infected.

Clearly for fixed L we have I → 0 as p → 0, so it is natural to
ask what happens when L and p are varied simultaneously – how
large must a square be, as a function of p, to have high probability of
becoming entirely infected? An early breakthrough was the following.

Theorem 1. [3] There exist positive constants C± such that, as
(L, p) → (∞, 0),

• I(L, p) → 1 if p log L > C+;
• I(L, p) → 0 if p log L < C−.

Other aspects of the model were subsequently studied in detail
(e.g. [4, 9, 28, 30]), but the question of whether C± could be re-
placed by a single sharp constant remained open for 15 years until
the following result in 2003, which furthermore establishes the con-
stant’s value.

Theorem 2. [21] Theorem 1 holds for all C− <
π2

18
< C+.

The above is an example of a phase transition – a sudden change
in behaviour as a parameter (here p log L) crosses a critical value

Figure 2: Bootstrap percolation on a square of size L = 300. Cells
were initially infected with probability p = 0.05. In this example
all cells eventually became infected, and the colours indicate time of
infection: red (initial infections), black (earliest), followed by dark
blue, light blue, green, yellow (latest).

(π2/18). The proof involves finding accurate bounds on the density
of nucleation centres.

Bootstrap percolation seems ideally suited to computer simulation.
Indeed this can be a valuable tool – Figure 2 immediately suggests
the idea of nucleation (a vital ingredient of the proofs). Amazingly
however, the resulting numerical predictions differ greatly from the
above rigorous result. On the basis of simulation of squares up to size
L = 28800, the critical value was estimated earlier in [2] to be 0.245±
0.015. (This conclusion was natural given the data, and subsequent
larger simulations appear at first sight to confirm it.) However the
rigorous value π2/18 = 0.548311 · · · is larger by more than a factor
of two! The discrepancy seemingly arises because convergence to the
limit π2/18 is extremely slow. In fact, combining simulation data
with Theorem 2 suggests that a square of size at least L = 1020 would
be needed in order to get close. This points to further intriguing
questions which we shall discuss later.

Cellular automaton models may be loosely defined as uniform lo-
cal rules for updating the states of an array of cells. Aside from
their intrinsic mathematical interest, such models have been applied
to wide variety of physical problems. In the case of bootstrap per-
colation these include magnetic alloys, hydrogen mixtures, computer
storage arrays, and crack formation (see e.g. the references in [1]).
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For the last example, imagine a lattice of atoms, with a small fraction
p “missing” or “defective”, and where any atom with two or more
defective neighbours becomes defective. Rather than accurately ap-
proximating reality, the aim is to capture phenomena of interest (such
as nucleation), and study them in the simplest setting possible. In-
terestingly, a relevant scale for some applications might be L ≈ 1010,
where the most accurate predictions currently arise from interpola-
tion between simulation and theoretical results. A further motivation
for studying simple models is for use as tools for the rigorous analysis
of more complicated systems. See [10, 15] for recent examples in the
case of bootstrap percolation. The model also arose independently
in the following (see [32] for background).

Puzzle. Prove that the entire square cannot become infected with
fewer than L cells initially infected. (There is a one-word solution!)

Theorem 1 has been extended to several variant models, sometimes
with other functional forms replacing the parameter p log L. These
include: p log · · · log L for the d-dimensional model [11, 12]; pα log L
for 2-dimensional models with various symmetric neighbourhoods
[17, 18]; p(− log p)β log L for certain asymmetric versions [18, 29];
pn24

√
n for the hypercube [8]; p

√
q for a “q-polluted” lattice [20].

The existence of a sharp constant as in Theorem 2 is conjectured in
all the cases above, but proved only for two other models below. In
the modified model, a healthy cell becomes infected if it has at least
one infected neighbour in each dimension.

Theorem 3. [22] For the modified model in d ≥ 2 dimensions, The-

orem 2 holds with parameter p log · · · log
| {z }

d−1

L and critical value π2

6
.

Theorem 4. [23] For the cross-shaped neighbourhood

o

k − 1

in

dimension 2 with an infection threshold of k(≥2) neighbours, Theo-

rem 2 holds with parameter p log L and critical value π2

3k(k+1)
.

It is an open problem to extend Theorem 3 to the standard model
in dimensions ≥ 3, and more generally to find a unified method for
proving the existence of sharp critical values. (The latter is rem-
iniscent of the famous random k-SAT problem.) The combinato-

rial structure behind the constants π2

3k(k+1)
is somewhat subtle and

mysterious. A by-product of Theorem 4 was the following, which
stimulated further investigations in [5].

Theorem 5. [23] The number ak(n) of integer partitions of n not
containing any k distinct consecutive parts satisfies

log ak(n) ∼ π
q

2
3

`
1 − 2

k(k+1)

´
n as n → ∞.

Adding randomness to the evolution of cellular automata often
makes them more tractable. Interacting particle systems (spatial
models involving Markovian evolution in continuous time) have been
studied with great success (see [27]). In contrast, models involving
deterministic evolution from random or deterministic initial condi-
tions, while physically natural, can be very challenging, and their
rigorous study is in its infancy. Besides bootstrap percolation, Fig-
ure 3 gives tastes of a few recent advances. Traffic in the BML model
(i) is proved to jam at high densities, but nothing is known about low
densities. The nth stage of the rotor aggregation (ii) is known to be
within distance n1/4+ε of a disk, but believed to be within distance
2. Certain Packard snowflake models (iii) fill only a proper fraction
of the plane, yet would completely fill any simulation up to size 109.
In a different direction, limiting trajectories in the random sorting
network (iv) are believed to be random sine curves, and known to be
Hölder(1/2).

Figure 3: (i) Biham-Middleton-Levine traffic model [6]; (ii) Propp’s
rotor-router aggregation [26, 25] (also see [24]); (iii) Packard’s
snowflake model [16]; (iv) random sorting network [7].

Returning to bootstrap percolation, it is of interest to explain the
apparent discrepancy between simulations and limiting behaviour.
These issues have been investigated partly non-rigorously in [14],
and some rigorous answers are proved in [19].

Theorem 6. [19] For bootstrap percolation in 2 dimensions, there
exists a positive constant c such that, as (L, p) → (∞, 0),

I(L, p) → 1 if p log L > π2

18
− c(log L)−

1

2 .

Suppose one tries to estimate the critical value π2/18 using
p1/2 log L, where pα(L) is defined via I(L, pα) = α. In order to

halve the error term c(log L)−1/2, one must raise L to the power 4.
In the case of the modified model in 2 dimensions, explicit estimates
are available, and imply for example that p1/2 log L is not within 1%
of π2/6 even when L = 103000 (see [19]).

While Theorem 6 shows that the distance from the critical pa-
rameter p1/2 log L to its asymptotic value is Ω((log L)−1/2), the
width of the critical window p1−ε log L − pε log L is much smaller,
O(log log L/ log L) (or θ(1/ log L) if we fix p rather than L) – see
[3, 8, 19]. This contrasts with models such as the Erdős-Renyi ran-
dom graph, where the window shrinks more slowly than its centre
converges.

Bootstrap percolation also seems to exhibit crossover – the ap-
proximate critical value 0.245 estimated in [2] appears accurate over
a wide (but bounded) interval of L. It is a fascinating challenge to
understand this phenomenon rigorously. One possible approach is
to prove a limiting result for some sequence of models in which this
interval becomes longer and longer.
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