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Abstract. Peres and Winkler proved a ‘censoring’ inequality for
Glauber dynamics on monotone spins systems such as the Ising
model. Specifically, if, starting from a constant-spin configuration,
the spins are updated at some sequence of sites, then inserting
another site into this sequence brings the resulting configuration
closer in total variation to the stationary distribution. We show
by means of simple counterexamples that the analogous statements
fail for Glauber dynamics on proper colorings of a graph, and for
lazy transpositions on permutations, answering two questions of
Peres. It is not known whether the censoring property holds in
other natural settings such as the Potts model.

1. Introduction

Peres and Winkler [6] proved the following striking and useful prop-
erty of Glauber dynamics on the Ising model. Consider a finite set
of sites with arbitrary ferromagnetic pair interactions, and let π be
the associated stationary distribution on spin configurations. Starting
from a constant spin configuration, apply single-site updates at a finite
deterministic sequence of sites, where each update consists of replac-
ing the spin at the chosen site with a random spin chosen according
to its conditional law under π given all other spins. This results in
a random configuration. If an additional site is inserted into the up-
date sequence, the resulting configuration is no further from π in total
variation distance.

The above result has proved to be an invaluable tool in the analysis
of mixing time for the Ising model; see the applications in [1, 2, 3, 4,
5]. Peres and Winkler prove their result in the more general setting
of monotone spin systems; that is, those in which the set of spins
is totally ordered and single-site updates stochastically respect this
ordering. The purpose of this note is to demonstrate that analogous
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statements fail in two other natural settings: proper colorings and lazy
transpositions.

We first consider colorings. Let G = (V,E) be a finite simple graph.
A (proper) q-coloring of G is a map from V to {1, . . . , q} that assigns
distinct values (colors) to adjacent vertices. Let µ be a probability
measure on the set of q-colorings and let v ∈ V be a vertex. Define the
recoloring operator κ(v) as follows. Let µ · κ(v) be the law of the
coloring obtaining from a coloring with law µ by replacing the color at
v with a uniformly random color from the set of colors absent from v’s
neighbours (conditional on the existing coloring). Let π be the uniform
measure on all q-colorings of G. An equivalent interpretation of κ(v)
is that the color at v is replaced with a random color chosen according
to its conditional law under π, given the existing coloring of V \ {v}.
Observe also that π is the stationary distribution of the Markov chain
that recolors a random vertex (chosen according to any distribution
with full support) at each step.

Proposition 1. Consider proper 4-colorings of the triangle. Let d be
any continuous metric on the space of probability measures on colorings,
and let δ be the point measure on some fixed coloring. There exist
integers 1 ≤ t < m and vertices i1, . . . , im, I such that, writing

µ = δ · κ(i1) · · ·κ(im),

ν = δ · κ(i1) · · ·κ(it)κ(I)κ(it+1) · · ·κ(im),
we have

d(µ, π) < d(ν, π).

In other words, if, starting from a deterministic coloring, a sequence
of vertices is recolored, then inserting an extra vertex in the sequence
can move the resulting distribution further from π. In particular, the
result applies when d is total variation distance, in which case it answers
a question of Yuval Peres (personal communication).

Now we turn to permutations. Let µ be a probability measure on
the symmetric group of permutations of V := {1, . . . , n}. For a pair
i, j ∈ V , we define the lazy transposition operator τ(i, j) as follows.
Let ρ = (ρ(1), . . . , ρ(n)) be a random permutation with law µ, and
let µ · τ(i, j) be the law of the random permutation obtained from ρ
by interchanging ρ(i) and ρ(j) with probability 1/2 (conditional on ρ),
and otherwise leaving ρ unchanged. Let δ be the point measure on the
identity permutation, and let π be the uniform probability measure on
all n! permutations.
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Proposition 2. Consider lazy transpositions on V = {1, . . . , 4}. Let
d be any continuous metric on the space of probability measures on
permutations. There exist m, t, I, J, i1, j1, . . . such that, writing

µ := δ · τ(i1, j1) · · · τ(im, jm),
ν := δ · τ(i1, j1) · · · τ(it, jt)τ(I, J)τ(it+1, jt+1) · · · τ(im, jm),

we have
d(µ, π) < d(ν, π).

2. Proofs

We will first prove Proposition 2, and then deduce Proposition 1.

Proof. We will show that, as (M,N) → ∞,

δ ·
[
τ(2, 4)τ(3, 4)

]M
τ(1, 4)τ(2, 4)

[
τ(1, 4)τ(3, 4)

]N → π, (1)

while

δ ·
[
τ(2, 4)τ(3, 4)

]M
τ(1, 4)τ(3, 4)τ(2, 4)

[
τ(1, 4)τ(3, 4)

]N → α, (2)

for some α ̸= π. By the continuity of d, the required inequality then
follows by taking M and N sufficiently large.

We interpret permutations as arrangements of particles, so that in
permutation µ, particle µ(i) is in location i, and τ(i, j) swaps the par-
ticles in locations i, j with probability 1/2. Let π1 be the uniform
measure on permutations ρ such that ρ(1) = 1, and note that

δ ·
[
τ(2, 4)τ(3, 4)

]M → π1 as M → ∞
(by the convergence theorem for irreducible aperiodic Markov chains).
Now consider a random permutation σ with law

β := π1 · τ(1, 4)τ(2, 4).
The location σ−1(1) of particle 1 is equal to 2 with probability 1/4, since
after the first transposition τ(1, 4) it was 1 or 4 each with probability
1/2. Conditional on the location of particle 1, the arrangement of
particles 2, 3, 4 is still uniform, so σ(2) (the particle in location 2) is
exactly uniform among 1, . . . , 4. Therefore,

β ·
[
τ(1, 4)τ(3, 4)

]N → π as N → ∞,

since conditional on σ(2), the effect of the additional transpositions is to
uniformize the particles in locations 1, 3, 4 in the limit. The convergence
(1) now follows by the continuity of the transposition operator τ(i, j).

A similar argument gives (2): after applying the extra transposition
τ(3, 4), particle 1 is at location 4 with probability 1/4 (and cannot
be at 2), therefore after τ(2, 4) it is at 2 with probability 1/8. Thus
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(2) holds with α the law of some random permutation that has 1 in
location 2 with probability 1/8. �

Proof of Proposition 1. Let the triangle G have vertices 1, 2, 3, and as-
sume without loss of generality that δ is the point measure on the
identity map. We may identify a 4-coloring of G with a permutation
assigning colors 1, . . . , 4 to four vertices 1, . . . , 4, with the color at ver-
tex 4 being the one absent from the coloring of G. For i = 1, 2, 3, the
operator κ(i) corresponds to the lazy transposition operator τ(i, 4).
Since the example constructed in the proof of Proposition 2 uses only
transpositions involving 4, the same example applies here. �

3. Further remarks

The example in the proof of Proposition 2 was chosen to minimize
computations and facilitate the proof of Proposition 1. Naturally, many
variations are possible. If d is total variation distance, an explicit
computation shows that the required inequality in fact holds with M =
N = 1. As a simpler alternative which does not adapt so readily to
coloring, we have

δ ·
[
τ(2, 4)τ(3, 4)

]M
τ(1, 4)τ(2, 4)τ(1, 3) → π, as M → ∞,

while the insertion of τ(3, 4) before the last τ(1, 3) again gives a differ-
ent limit. Finally, if we relax the problem by allowing a “block update”
τ(S) (defined so as to uniformly permute the elements of a set S ⊂ V ),
then we may of course do away with limits, replacing the expressions
[ ]M and [ ]N with τ({2, 3, 4)} and τ({1, 3, 4}).

We note that our example adapts to the anti-ferromagnetic Potts
model. Consider the 4-state Potts model on a triangle, with anti-
ferromagnetic interactions (i.e. favoring distinct spins) of equal strength
J along each edge. As J → ∞, the transition probabilities for site
updates approach those of the 4-coloring model. Hence, starting from
a configuration where all 3 vertices have different spins, the example in
the proof of Proposition 1 applies here if J is large enough. Moreover,
starting from a constant all-1 configuration and updating vertices 2 and
3 results in a configuration that is asymptotically (as J → ∞) uniform
on those where vertex 1 has spin 1. Hence the same example applies
with M = 1.

It is an open question whether extra updates can delay mixing for the
ferromagnetic Potts model starting from a constant spin configuration.
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