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Abstract. Does there exist a Lipschitz injection of Zd into the
open set of a site percolation process on ZD, if the percolation
parameter p is sufficiently close to 1? We prove a negative answer
when d = D, and also when d ≥ 2 if the Lipschitz constant M is
required to be 1. Earlier work of Dirr, Dondl, Grimmett, Holroyd,
and Scheutzow yields a positive answer for d < D and M = 2.
As a result, the above question is answered for all d, D and M .
Our proof in the case d = D uses Tucker’s Lemma from topo-
logical combinatorics, together with the aforementioned result for
d < D. One application is an affirmative answer to a question of
Peled concerning embeddings of random patterns in two and more
dimensions.

1. Introduction and results

1.1. Preliminaries. Let Zd denote the d-dimensional integer lattice.
Elements of Zd are called sites. Let ∥ · ∥r denote the ℓr-norm on Zd,
and abbreviate ∥ · ∥1 to ∥ · ∥. We say that a map f : Zd → ZD is
M -Lipschitz, or M -Lip, if ∥f(x) − f(y)∥ ≤ M for all x, y ∈ Zd with
∥x− y∥ = 1.

For p ∈ [0, 1], consider the site percolation model on ZD. That is,
declare each site to be open (or p-open) with probability p, and oth-
erwise closed, with different sites receiving independent designations.
Let Wp(ZD) denote the random set of open sites, and write Pp and Ep

for the associated probability measure and expectation operator.
We are interested primarily in the probability

(1) L(d,D,M, p) := Pp

(
∃ an M -Lip injection from Zd to Wp(ZD)

)
.

Clearly L is increasing in D, M , and p, and decreasing in d. Further-
more, L is {0, 1}-valued, since Pp is a product measure and the event
in (1) is invariant under translations of ZD. We define the critical
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probability

pc(d,D,M) := inf{p : L(d,D,M, p) = 1},
and furthermore

Mc(d,D) := min{M ≥ 1 : pc(d,D,M) < 1},
(where min∅ := ∞). That is, Mc(d,D) is the smallest M such that,
for some p < 1, there exists, Pp-a.s., an injective M -Lip map from Zd

to the open sites of ZD.
Note that L(1, D,M, p) is simply the probability that there exists

an open bi-infinite self-avoiding path in the graph with vertex-set ZD

and an edge connecting every pair of sites at ℓ1-distance at most M . It
follows from standard percolation results that pc(1, D,M) is the critical
probability for site percolation on this graph (see for example [9, Proof
of Theorem 3.9] for a proof for arbitrary graphs). Therefore, forM ≥ 1,

pc(1, D,M)

{
= 1 if D = 1,

∈ (0, 1) if D ≥ 2.

We deduce in particular that pc(d,D,M) > 0 for all d,D,M ≥ 1. The
problem of interest is to determine for which d, D, M it is the case
that pc(d,D,M) = 1.

1.2. Main result.

Theorem 1. Let d,D,M be positive integers.

(a) For all d, we have pc(d, d+1, 2) < 1, and hence Mc(d, d+1) ≤ 2.
(b) For all D ≥ 2, we have pc(2, D, 1) = 1, and hence Mc(2, D) > 1.
(c) For all d ≥ 2 and all M , we have pc(d, d,M) = 1, and hence

Mc(d, d) = ∞.

It is an elementary observation that if d > D then L(d,D,M, 1) = 0
for all M , and hence Mc(d,D) = ∞. (To check this, suppose that
f : Zd → ZD is an M -Lip injection, and let Sn := {x ∈ Zd : ∥x∥ ≤ n}.
Then |Sn| has order nd, but |f(Sn)| has order at most nD (< nd),
in contradiction of the injectivity of f .) Therefore, the above results
suffice to determine the values of Mc for all d, D, as summarized in
Table 1. We note in particular that

(2) Mc(d,D) < ∞ if and only if d < D.

Theorem 1(a) is an immediate consequence of a substantially stronger
statement proved in [2], which we state next. For x = (x1, . . . , xd−1) ∈
Zd−1 and z ∈ Z we write (x, z) := (x1, . . . , xd−1, z) ∈ Zd. Write
Z+ := Z ∩ (0,∞).
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d�D 1 2 3 4 5 . . .
1 ∞ 1 1 1 1 . . .
2 ∞ ∞ 2 2 2 . . .
3 ∞ ∞ ∞ 2 2 . . .
4 ∞ ∞ ∞ ∞ 2 . . .
5 ∞ ∞ ∞ ∞ ∞ . . .
...

...
...

...
...

...
. . .

Table 1. The values of Mc(d,D) for d,D ≥ 1.

Theorem 2 (Lipschitz percolation, [2]). Let d ≥ 2 and suppose p > 1−
(2d)−2. There exists Pp-a.s. a (random) 1-Lip function F : Zd−1 → Z+

such that for every x ∈ Zd−1, the site (x, F (x)) ∈ Zd is open.

With F given as in Theorem 2, the map x 7→ (x, F (x)) is evidently
a 2-Lip injection, thus establishing Theorem 1(a). Other applications
of Theorem 2 appear in [3, 6]. Further properties of F are explored in
[5], where an improved bound on the value of p in Theorem 2 is given.

The proof of Theorem 1(b) is relatively straightforward and may be
found in Section 2 (the proof involves showing that any 1-Lip injection
from Z2 to the full lattice ZD must satisfy rather rigid conditions). The
principal contribution of the current paper is Theorem 1(c). Interest-
ingly, our proof of this non-existence result makes use of the above
existence result, Theorem 2. Another essential ingredient of this proof
is Tucker’s Lemma from topological combinatorics (see [10, 12]).

It is immediate from the definition of Mc(d,D) that, if Mc(d,D) =
∞, then pc(d,D,M) = 1 for all M ≥ 1. On the other hand, we have
the following result when Mc(d,D) < ∞ (which occurs if and only if
d < D, as noted in (2) above).

Proposition 3. Let d, D be positive integers such that Mc(d,D) < ∞.
Then pc(d,D,M) → 0 as M → ∞.

1.3. Embeddings of patterns. The above results concerning maps
from Zd to the open sites of ZD have implications in the more general
setting of maps that preserve values indexed by Zd, as follows. Let
Ωd := {0, 1}Zd

be the space of percolation configurations, in which the
value 1 (respectively, 0) is identified with the state ‘open’ (respectively,
‘closed’). An embedding of a configuration η ∈ Ωd into a configura-
tion ω ∈ ΩD is an injection f : Zd → ZD such that η(x) = ω(f(x)) for
all x ∈ Zd. We call a configuration η ∈ Ωd partially periodic if there
exist x ∈ Zd and r ∈ Z+ such that η(x) = η(x+ ry) for all y ∈ Zd.
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Proposition 4 (Embedding). Let d, D be positive integers.

(a) Let d ≥ 2, p ∈ (0, 1) and η ∈ Ωd. For Pp-a.e. ω ∈ ΩD, there
exists no 1-Lip embedding of η into ω.

(b) Let d < D. For every p ∈ (0, 1), there exists M ≥ 1 such that:
for Pp-a.e. ω ∈ ΩD, it is the case that for every η ∈ Ωd, there
exists an M-Lip embedding of η into ω.

(c) Let d = D and let η ∈ Ωd be a partially periodic configuration.
For every p ∈ (0, 1), M ≥ 1, and for Pp-a.e. ω ∈ ΩD, there
exists no M-Lip embedding of η into ω.

The current work was motivated in part by the problem of Lips-
chitz embeddings of random one-dimensional configurations (see [4, 7]).
Proposition 4(a) extends Theorem 1(b) to more general configurations
than the all-1 configuration. Part (b) answers affirmatively a question
posed by Ron Peled concerning the existence of M -Lip embeddings of
d-dimensional random configurations into spaces of higher dimension;
see [4, Sect. 5]. Part (c) leaves unanswered the question of whether or
not there exist d ≥ 1, p ∈ (0, 1), η ∈ Ωd, and M < ∞ such that: with
strictly positive probability (and therefore probability 1), there exists
an M -Lip embedding from η into a random configuration ω ∈ Ωd hav-
ing law Pp.

1.4. Quasi-isometry. There is a close connection between the exis-
tence of embeddings and of quasi-isometries. A quasi-isometry be-
tween two metric spaces (X, δ) and (Y, ρ) is a map f : X → Y such
that: there exist constants ci ∈ (0,∞) with

(a) ∀ x, x′ ∈ X, c1δ(x, x
′)− c2 ≤ ρ(f(x), f(x′)) ≤ c3δ(x, x

′) + c4,
(b) ∀ y ∈ Y , ∃ x ∈ X such that ρ(f(x), y) ≤ c5.

We call such f a c-quasi-isometry when we wish to emphasize the role
of the vector c = (c1, . . . , c5). It is not difficult to see that the existence
of a quasi-isometry is a symmetric relation on metric spaces. Quasi-
isometries of random metric spaces are discussed in [11]. A subspace
of a metric space (X, δ) is a metric space (U, δ) with U ⊆ X.

Proposition 5 (Quasi-isometry). Let d, D be positive integers, and let
E be the event that there exists a quasi-isometry between (Zd, ℓ1) and
some subspace of (Wp(ZD), ℓ1).

(a) If d < D then for all p ∈ (0, 1) we have Pp(E) = 1.
(b) If d ≥ D then for all p ∈ (0, 1) we have Pp(E) = 0.

The proofs of Theorem 1(b,c) appear respectively in Sections 2 and 3.
The remaining propositions are proved in Section 4. Section 5 contains
four open problems.
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2. Nearest-neighbour maps

In this section we prove Theorem 1(b). A (self-avoiding) path in Zd

is a finite or infinite sequence of distinct sites, each consecutive pair
of which is at ℓ1-distance 1. Let e1, . . . , ed ∈ Zd be the standard basis
vectors of Zd, and let 0 denote the origin.

Lemma 6. Let x1, . . . , xk ∈ ZD be distinct, and let A = A(x1, . . . , xk)
be the event that there exists a singly-infinite path 0 = y0, y1, . . . in ZD

such that the sites (xi + yj : i = 1, . . . , k, j = 0, 1, . . .) are distinct and
open. If p < (2D)−1/k then Pp(A) = 0.

Proof. Let An be the event that there exists a path 0 = y0, y1, . . . , yn of
length n in ZD such that the sites (xi + yj : i = 1, . . . , k, j = 0, . . . , n)
are distinct and open. Note that A is the decreasing limit of An as
n → ∞. Let Nn be the number of paths 0 = y0, . . . , yn with the
properties required for An. Then

Pp(An) ≤ EpNn ≤ (2D)npnk
n→∞−−−→ 0, if 2Dpk < 1.

Here, (2D)n is an upper bound for the number of n-step self-avoiding
paths (yj) starting from 0, while for those paths for which the sites
xi + yj are distinct, pnk is the probability they are all open. �
Proof of Theorem 1(b). We must prove that, for any fixed p < 1 and
D ≥ 2, a.s. there exists no 1-Lip injection from Z2 to Wp(ZD).

First, suppose f is a 1-Lip injection from Z2 to the full lattice ZD,
and consider the image of a unit square. Specifically, take (i, j) ∈ Z2

and let

r1 = f(i+ 1, j)− f(i, j), r′1 = f(i+ 1, j + 1)− f(i, j + 1),

r2 = f(i, j + 1)− f(i, j), r′2 = f(i+ 1, j + 1)− f(i+ 1, j).

Note that: the four vectors r1, r2, r
′
1, r

′
2 are elements of {±ej : j =

1, . . . , D} (by the 1-Lip property); they satisfy r1 + r′2 = r′1 + r2 (by
definition); the pair r1, r2 are neither equal to nor negatives of each
other; and similarly for r1, r

′
2 (a consequence of injectivity). It follows

that r1 = r′1 and r2 = r′2. Since this holds for every unit square, for
any distinct i, i′ ∈ Z, the images under f of the two paths {(i, j) :
j ∈ Z} and {(i′, j) : j ∈ Z} are two disjoint self-avoiding paths that
are translates of each other. (Another consequence, which we shall not
need, is that there exists ∆ ⊂ {1, . . . , D} such that all horizontal edges
have images in {±ej : j ∈ ∆}, and all vertical edges have images in the
complement {±ej : j /∈ ∆}).

Let B be the event that there exist x1, x2, . . . ∈ ZD and a self-
avoiding path 0 = y0, y1, . . . in ZD such that the sites (xi+yj : i ≥ 1, j ≥
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0) are distinct and open. The above argument implies that, if there
exists a 1-Lip injection f : Z2 → Wp(ZD), then B occurs. We shall now
show that Pp(B) = 0 for all p < 1 and d ≥ 1. Let k be large enough
that p < (2D)−1/k. We define Bk analogously to B, except in that we
now require the existence of only k sites x1, . . . , xk. Lemma 6 implies
that Pp(Bk) = 0, because Bk is the countable union over all possible
x1, . . . , xk of the events A(x1, . . . , xk). Finally, we have B ⊆ Bk. �

3. The case of equal dimensions

In this section we prove Theorem 1(c). We denote integer intervals
by La, bK := (a, b] ∩ Z, etc. Fix any d ≥ 2, M ≥ 1 and p ∈ (0, 1). We
will prove that a.s. there exists no M -Lip injection from Zd to Wp(Zd).

The idea behind the proof is as follows. Suppose that f is such
an injection. By a hole we mean a cube of side length M in Zd all
of whose sites are closed (actually, a slightly different definition will
be convenient in the formal proof, but this suffices for the current
informal sketch). Holes are rare (if p is close to 1), but the typical
spacing between them is a fixed function of d, M , and p. We will
consider the image under f of a cuboid J1, nKd−1 × J1,mK ⊂ Zd, where
m ≫ n ≫ 1. We will arrange that the images of the two opposite facesJ1, nKd−1 × {1} and J1, nKd−1 × {m} are far apart, and separated by
a (d − 1)-dimensional ‘surface of holes’ (at the typical spacing). This
implies that image of the interior of the cuboid must pass through this
surface, avoiding all the holes. To do so, the image must be in some
sense be folded up so as to be locally (d− 1)-dimensional, and this will
give a contradiction to the injectivity of f if n is chosen large enough
compared with the spacing of the holes.

In the case d = 2, it is possible to formalize the above ideas using
fairly direct ad hoc geometric arguments. It is plausible that a similar
approach could be pushed through (with substantially more difficulty)
for d = 3. For general d, a less direct (but more systematic) approach
appears to be required. Specifically, the surface of holes will be con-
structed using Theorem 2, and, crucially, we will augment it with a
colouring of the nearby open sites using exactly d− 1 colours, in such
a way that the coloured sites separate the two sides of the surface from
each other, but the sites of any given colour fall into well-separated
regions of bounded size. Via the map f , this colouring will induce a
colouring of the cuboid that contradicts a certain topological fact.

The following notation will be used extensively. A colouring of
a set of sites U ⊆ Zd is a map χ from U to a finite set Q. A site
u ∈ U is said to have colour χ(u) ∈ Q. We introduce the graph
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G(U, ℓr, k) having vertex set U and an edge between u, v ∈ U if and
only if 0 < ∥u − v∥r ≤ k. An important special case is the star-
lattice G∗ = G∗

d := G(Zd, ℓ∞, 1). Given a graph G and a colouring
χ of its vertex set, a q-cluster (of χ with respect to G) is the vertex
set of a connected component in the subgraph of G induced by the set
of vertices of colour q. The volume of a cluster is defined to be the
number of its sites.

We next state the two main ingredients of the proof: a topologi-
cal result on colouring a cuboid, and a result on existence of random
coloured surfaces in the percolation model.

Proposition 7 (Colour blocking). Let d, n,m be positive integers, and
consider a colouring

χ : J1, nKd−1 × J1,mK → {−∞,+∞, 1, 2, . . . , d− 1}.
If χ satisfies:

(a) all sites in J1, nKd−1 × {1} have colour −∞;
(b) all sites in J1, nKd−1 × {m} have colour +∞; and
(c) no site of colour +∞ is adjacent in G∗ to a site of colour −∞,

then, for some j ∈ {1, 2, . . . , d − 1}, χ has a j-cluster with respect to
G∗ of volume at least n.

In fact, Proposition 7 remains valid if ‘volume’ is replaced with ‘di-
ameter’, as we shall see.

Proposition 8 (Coloured surfaces). Fix d ≥ 2, J ≥ 1, and p ∈ (0, 1).
There exist constants K,C < ∞ (depending on d, J , and p) such that
Pp-a.s. there is a (random) colouring

λ : Wp(Zd) → {−∞,+∞, 1, 2, . . . , d− 1}
of the open sites of Zd with the following properties.

(a) No site of colour +∞ is adjacent to a site of colour −∞ in
G(Wp(Zd), ℓ∞, J).

(b) For each j ∈ {1, 2, . . . , d − 1}, every j-cluster with respect to
G(Wp(Zd), ℓ∞, J) has volume at most K.

(c) There exists a (random) non-negative real-valued function g :
Zd−1 → [0,∞), with the Lipschitz property that |g(u)− g(v)| ≤
d−1∥u− v∥1 for all u, v ∈ Zd−1, such that all open sites in

S− :=
{
(u, z) : u ∈ Zd−1, z < g(u)}

are coloured −∞, while all open sites in

S+ :=
{
(u, z) : u ∈ Zd−1, z > g(u) + C}

are coloured +∞.
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In (c) above, note in particular that all open sites in the half-space
Zd−1 × L−∞, 0M are coloured −∞.

The proof of Theorem 1(c) will proceed by playing Propositions 7
and 8 against one another to obtain a contradiction. The number
of permitted colours is crucial — if one colour more were added to
1, . . . , d− 1 then the conclusion of Proposition 7 would no longer hold,
while with one colour fewer, the conclusion of Proposition 8 would
not hold. It should also be noted that the use of the star-lattice G∗

is essential in Proposition 7 — the statement does not hold for the
nearest-neighbour lattice G(Zd, ℓ1, 1). Another key point is that the
presence of closed sites is essential for Proposition 8 — the conclusion
does not hold when p = 1 (for any K,C), since such a colouring would
give a contradiction to Proposition 7.

The choice of the Lipschitz constant d−1 in Proposition 8(c) above
is relatively unimportant — the result would hold for any positive con-
stant, while any constant less than (d − 1)−1 would suffice for our
application (see Lemma 11 below).

Our proof of Proposition 7 will use Tucker’s Lemma, a beautiful re-
sult of topological combinatorics. The general version of [8, 12] applies
to triangulations of a ball, and is a close relative of the Borsuk–Ulam
Theorem; see [10] for background. We need only a special case, for the
cuboid, which is also proved in [1].

For t ∈ J1,∞Md, consider the integer cuboid T = T (t) := J0, t1K ×
· · ·×J0, tdK ⊂ Zd with opposite corners 0 and t, and define the boundary
∂T := T \ [L0, t1M× · · · × L0, tdM]. We say that boundary sites x, y ∈ ∂T
are antipodal if x+ y = t.

Lemma 9 (Tucker’s Lemma for the cuboid, [1]). Let T ⊂ Zd be a
cuboid as above, and suppose β : T → {±1, . . . ,±d} is a colouring
such that for each antipodal pair x, y ∈ ∂T we have β(x) = −β(y).
Then there exist u, v ∈ T that are adjacent in G∗ (and, in fact, that
satisfy ui ≤ vi ≤ ui + 1 for all i) such that β(u) = −β(v).

Proof of Proposition 7. Throughout the proof, adjacency and clusters
refer to G∗. The (ℓ∞-)diameter of a cluster is the maximum ℓ∞-
distance between two of its sites. It suffices to show that for a colouring
χ satisfying the given conditions, there is a j-cluster of diameter at least
n for some j ̸= ±∞. Suppose that this is false. We will construct a
modified colouring that leads to a contradiction.

First define a colouring χ′ of the larger cuboid T := J0, n + 1Kd−1 ×J0,m + 1K as follows. Let χ′ agree with χ on T \ ∂T , except with
colour ∞ everywhere changed to d, and −∞ changed to −d. Colour
∂T as follows. For each i = 1, . . . , d, let χ′ assign colour −i to the face
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{x ∈ T : xi = 0}, and colour +i to the antipodal face (this rule creates
conflicts at the intersections of faces; for definiteness assign such sites
the candidate colour of smallest absolute value). Thus χ′ satisfies the
condition of Lemma 9 on the boundary.

Now let β be the colouring of T obtained by modifying χ′ as follows.
For each i = 1, . . . , d − 1, recolour with colour −i all i-clusters that
are adjacent to the face coloured −i. Since there were no i-clusters
of diameter as large as n in χ, this does not affect the colours on
∂T . Hence Lemma 9 applies, so there are adjacent sites u, v ∈ T with
β(u) = −β(v), which contradicts the manner of construction of β. �

The proof of Proposition 8 relies on Theorem 2 concerning Lipschitz
surfaces in percolation, together with the following deterministic fact.

Lemma 10 (Periodic colouring). For any integers d ≥ 1 and R ≥
2d, there exists a colouring α : Zd → {0, 1, . . . , d} with the following
properties.

(a) The colouring is periodic with period R in each dimension; that
is, α(x+Ry) = α(x) for all x, y ∈ Zd.

(b) For each j ∈ {0, 1, . . . , d}, every j-cluster with respect to G∗

has volume at most Rd.
(c) The 0-clusters with respect to G∗ are precisely the cubes

Rx+ J−(d− 1), (d− 1)Kd, for x ∈ Zd.

Proof. The construction is illustrated in Figure 1. Define a slice to be
any set of sites of the form Y = Rx+(I1× · · ·× Id), where x ∈ Zd and
each Ii is either {0} or J1, R− 1K. If J1, R− 1K appears k times in this
product then we call Y a k-slice. The set of all slices forms a partition
of Zd. Let ak := d−1−k. For a k-slice Y , define the associated k-slab
to be the set obtained from Y by replacing each occurrence of {0} in
the product I1 × · · · × Id with J−ak, akK (thus ‘thickening’ the slice by
distance ak). We now define the colouring: for each site x, let α(x) be
the smallest k for which x lies in some k-slab.

The required properties (a) and (c) are immediate (the cubes in (c)
are precisely the 0-slabs). For (b), note that any k-cluster is contained
within a single k-slab; it is straightforward to check that, for any given
k, any connection in G∗ between two different k-slabs is prevented by
sites of smaller colours (here it is important that ak is strictly decreasing
in k). The volume of a k-slab is (R− 1)k(2ak + 1)d−k < Rd. �

In the following, we sometimes refer to the d coordinate as vertical,
with positive and negative senses being up and down respectively, and
the other coordinate directions as horizontal.
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1
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HHHHHHH

(3)

2

1

0

Figure 1. Part of the colouring α of Lemma 10, for
d = 1 (top), d = 2 (middle), d = 3 (bottom; colour 3 is
shown transparent, and only selected slabs are shown).

Proof of Proposition 8. See Figure 2 for an illustration of the construc-
tion. Let L be a large constant, a multiple of J , to be determined
later, and let α be the colouring from Lemma 10 with parameters d−1
and R := L/J . Let α′ be the colouring obtaining by dilating α by a
factor J , that is, for u ∈ Zd−1, let α′(u) = α([u/J ]) (where [v] denotes
v with each co-ordinate rounded to the nearest integer, rounding up
in the case of ties). Note from property (a) in Lemma 10 that α′ has
period L in each dimension, while by (b), for j ∈ {0, 1, . . . , d − 1},
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−∞

1

+∞

1

2

(−∞)

(+∞)

Figure 2. Part of the random colouring λ of Proposi-
tion 8, for d = 2 (top), and d = 3 (bottom, with colours
±∞ shown transparent). Holes are shown black.

each j-cluster of α′ with respect to G(Zd−1, ℓ∞, J) has volume at most
Ld−1. Write r := J(2d − 3). From Lemma 10(c), the 0-clusters of α′

are (d− 1)-dimensional cubes of side length r centred (approximately)
at the elements of the lattice LZd−1.

For u ∈ Zd−1 we will use α′(u) to determine the colours (other than
±∞) assigned by λ to sites in the vertical column {u} × Z. Colours
1, . . . , d− 1 will be used unchanged, while colour 0 will be treated in a
different way.

We now introduce a renormalized percolation process, starting with
certain sets to be used in its definition. For a site x = (x1, . . . , xd) ∈ Zd,
write x := (x1, . . . , xd−1) ∈ Zd−1 and x := xd, so that x = (x, x). Let
Cx ⊂ Zd−1 be the 0-cluster of α′ centred at Lx. Let s := ⌊L/d⌋ (where
⌊·⌋ denotes the integer part). Let Cx be the interval Jsx, s(x+1)M ⊂ Z.
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Define the cell corresponding to x ∈ Zd to be the set of sites Cx :=
Cx × Cx. Thus, each cell is a cuboid of height s, and side length r
in each horizontal dimension. The centres of the cells are spaced at
distance s vertically (so that they abut each other), and at distance L
horizontally.

Define a hole to be any cube of the form z+J1, rKd, where z ∈ Zd, all
of whose sites are closed in the percolation configuration. We say that
the cell Cx is holey if it contains some hole as a subset. Now we return
to the issue of choosing L. Since a hole has volume rd (a function of J
and d), and a cell has height s = ⌊L/d⌋, we may choose L a sufficiently
large multiple of J (depending on J , d, and p) so that the probability
that a cell is holey exceeds 1− (2d)−2. For later purposes, ensure also
that L is large enough that s > J and ⌊(L − r)/2⌋ > J . By Theorem
2, there exists a.s. a 1-Lip function F : Zd−1 → Z+, such that all the
cells C(u,F (u)) for u ∈ Zd−1 are holey.

We specify next a set of sites surrounding each of the holey cells
considered above, to be coloured according to α′. For any x ∈ Zd−1, let
Bx be the cube {v ∈ Zd−1 : [v/L] = x} (so that these cubes partition

Zd−1). Let Bx be the interval Jsx, sx + LM. Define the block corre-
sponding to x ∈ Zd to be the set of sites Bx := Bx ×Bx. Thus Bx is a
cube of side L which contains the cell Cx (at its bottom-centre).

Now we define the colouring λ. For each u ∈ Zd−1, call the block
B(u,F (u)) active. To each open site y ∈ B(u,F (u)), assign the colour α′(y),
provided this is one of the colours 1, 2, . . . , d − 1. For the remaining
sites y in the active block (those satisfying α′(y) = 0), we proceed as
follows. Since the cell is holey, choose one hole Hu ⊂ C(u,F (u)). Since
the sites in Hu are closed, they receive no colours. Assign colour ∞ to
all open sites in the block that lie above the hole Hu, and assign colour
−∞ to those that lie below Hu. (We say that a site x lies above a
set S if there exists y ∈ S with x = y, and for all such y we have
x > y; below is defined similarly with the inequality reversed). We
have assigned colours to all open sites lying in active blocks. Finally,
assign colour ∞ to all open sites that lie above some active block, and
colour −∞ to all those that lie below some active block.

Now we must check that the colouring λ has all the claimed proper-
ties. For property (b), note first that if the function F were constant,
then each j-cluster for j = 1, . . . , d − 1 would have volume at most
Ld−1 × L = Ld, since the colouring α′ has merely been ‘thickened’
vertically to thickness L. The effect of taking a non-constant F is
to displace the active blocks in the vertical direction, and this clearly
cannot make these clusters any larger, so we can take K = Ld.
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Property (c) follows easily from the Lipschitz property of F . The
constant d−1 arises because for u, v ∈ Zd−1 with ∥u − v∥1 = 1, the
centres of the corresponding blocks are at horizontal displacement L
from each other, and vertical displacement at most s ≤ L/d. Once the
function g is determined for the centres of the blocks, it can be defined
elsewhere by linear interpolation.

To check property (a), suppose on the contrary that there exist two
sites x, y with respective colours +∞,−∞ within ℓ∞-distance J of each
other. If there is a single active block such that both x and y lie above,
below or within it, this contradicts the presence of a hole (which has
side length r > J) in the corresponding cell. Also, if one of x, y lies
within an active block then the other cannot lie above, below or within
a different active block, since ⌊(L−r)/2⌋ > J . Therefore the only other
case to consider is that x and y lie respectively above and below two
different active blocks, say B(u,F (u)) and B(v,F (v)), for some u, v ∈ Zd−1.
In this case we must have ∥u− v∥∞ = 1 and therefore |F (u)−F (v)| ≤
∥u− v∥1 ≤ d− 1, so the height intervals BF (u) and BF (v) overlap by at
least L− (d− 1)s ≥ s > J , giving again a contradiction. �

To complete the proof of Theorem 1(c) we will need the following
simple geometric fact in order to find an appropriate separating surface.
For a vector x = (x1, . . . , xd) ∈ Rd, write x̂r for the (d − 1)-vector
obtained by dropping the r-coordinate.

Lemma 11. Let a±1, . . . , a±d be positive constants and define for i =
1, . . . , d the sets

Ai :=
{
x ∈ Rd : xi ≤ d−1∥x̂i∥1 + ai

}
;

A−i :=
{
x ∈ Rd : xi ≥ −d−1∥x̂i∥1 − a−i

}
.

Then
∩

i=±1,...,±dAi is bounded.

Proof. We may assume without loss of generality that the ai are all
equal, to a say. For x ∈ Ai ∩ A−i we have |xi| ≤ d−1∥x̂i∥1 + a, hence
for x in the given intersection, summing the last inequality over i gives

∥x∥1 ≤
d− 1

d
∥x∥1 + da,

hence ∥x∥1 ≤ d2a. �
Proof of Theorem 1(c). Fix d ≥ 2, M ≥ 1 and p ∈ (0, 1), and suppose
that f is an M -Lip injection from Zd to Wp(Zd). Let K be the constant
from Proposition 8 for the given values of p, d, and with J := dM . Let
n := K+1. Let N be large enough so that the image f(J1, nKd−1×{1})
is a subset of J−N,NKd.
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Now apply Proposition 8 (again with parameters p, d and J = dM),
but to the translated lattice having its origin at (N + 1)ed, to obtain
(a.s.) a colouring of Wp(Zd) in which all open sites in Zd−1 × L−∞, NK
have colour −∞. Call this colouring λd, and let S+

d be the set corre-
sponding to S+ in Proposition 8(c) (all of whose open sites are coloured
∞). Similarly, for each of the two senses of the d coordinate directions,
apply Proposition 8 to the lattice rotated and translated so that the
part of the half-axis at distance greater than N from the origin is
mapped to the positive d-axis. Thus we obtain 2d colourings λi of
Wp(Zd), with associated sets S+

i , for i = ±1, . . . ,±d, such that all the
colourings assign colour −∞ to J−N,NKd, and λi assigns colour ∞ to
sites sufficiently far along the i coordinate half-axis.

For each i as above, let S++
i be the set of sites y such that every site

within ℓ1-distance dMn of y lies in S+
i . We claim that

Z := Zd \
∪

i=±1,...,±d

S++
i

is a finite set. This follows from Lemma 11, because Zd \ S++
i lies in

a set of the form Ai in the lemma (here it is important the Lipschitz
constant in Proposition 8(c) is d−1). Since f is injective, it follows that,
for some m > 1, the site f((1, . . . , 1,m)) lies outside Z, and hence lies
in S++

I for some I. Since f(J1, nKd−1 × {m}) has ℓ1-diameter at most
dMn, this implies that f(J1, nKd−1 × {m}) is a subset of S+

I , and is
therefore coloured ∞ in λI .

Now define a colouring

χ : J1, nKd−1 × J1,mK → {∞,−∞, 1, 2, . . . , d− 1}

via χ := λI ◦ f . By the construction, χ satisfies properties (a) and (b)
of Proposition 7. Now, if x, y are adjacent sites in G∗ then ∥x−y∥1 ≤ d,
and therefore the M -Lip property gives

∥f(x)− f(y)∥∞ ≤ ∥f(x)− f(y)∥1 ≤ dM = J,

so f(x), f(y) are adjacent in G(Wp(Zd), ℓ∞, J). Hence, property (i)
in Proposition 8 implies that χ has no two adjacent sites in G∗ with
colours +∞ and −∞, which is property (c) of Proposition 7. There-
fore by Proposition 7, for some j ̸= ±∞, χ has a j-cluster of volume
at least n with respect to G∗. Let A be such a cluster. Since f is
injective, f(A) also has volume at least n. But by the above observa-
tion on adjacency, f(A) is a subset of some j-cluster of λI with respect
to G(Wp(Zd), ℓ∞, J). This contradicts property (b) in Proposition 8
because n > K. �
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4. Embedding and Quasi-isometry

We will use the following simple renormalization construction. Fix
an integer r ≥ 1. For a site x = (x1, . . . , xD) ∈ ZD define the corre-
sponding clump (or r-clump) to be the set of r sites given by:

Kx :=
{
(x1, . . . xD−1, rxD + i) : i ∈ J0, r − 1K}.

The clumps (Kx : x ∈ ZD) form a partition of ZD, with the geometry
of ZD stretched by a factor r in the Dth coordinate. If ∥x − y∥ = k
then, for all u ∈ Kx and v ∈ Ky, we have ∥u− v∥ ≤ (2r − 1)k.

Proof of Proposition 3. Let d < D, which is to say that Mc(d,D) < ∞.
Any given r-clump contains one or more open sites with probability
1− (1−p)r. If this probability exceeds pc(d,D,M), there exists a.s. an
M -Lip injection f : Zd → ZD such that, for each y ∈ f(Zd), the clump
Ky contains some open site. By choosing one representative open site
in each such clump, we obtain a (2r − 1)M -Lip injection from Zd to
Wp(ZD). Hence,

pc
(
d,D, (2r − 1)M

)
≤ 1−

(
1− pc(d,D,M)

)1/r
.

The claim follows by the monotonicity of pc in M . �
Proof of Proposition 4. (a) We may assume with loss of generality that
d = 2 ≤ D. The proof follows that of Theorem 1(b) as presented in Sec-
tion 2, with one difference. Let η ∈ Ω2. The event A = A(x1, . . . , xk)
of Lemma 6 is redefined as the event that there exists a singly-infinite
path 0 = y0, y1, . . . in ZD such that: the sites (xi+yj : i = 1, . . . , k, j =
0, 1, . . .) are distinct, and ω(xi + yj) = η(i, j) for all such i, j. As in
the proof of Lemma 6, Pp(A) = 0 whenever max{p, 1− p} < (2D)−1/k.
The proof is now completed as for the earlier theorem.

(b) Let d < D and write m = Mc(d,D) < ∞. Given p ∈ (0, 1),
choose r sufficiently large that any given r-clump contains both an open
and a closed site with probability exceeding pc(d,D,m). There exists
a.s. an m-Lip injection f : Zd → ZD such that, for each y ∈ f(Zd), the
r-clump Ky contains both an open and a closed site. Hence, for any
configuration η, by choosing the open or the closed site as appropriate
in each r-clump, we obtain a (2r − 1)m-Lip embedding of η into ω.

(c) Let d ≥ 1, M ≥ 1, and let η ∈ Ωd be partially periodic. Without
loss of generality, we may assume, for some r ∈ Z+ and all y ∈ Zd,
that η(ry) = η(0) = 1. Let ω ∈ Ωd and assume there exists an M -Lip
embedding f from η into ω. Let g : Zd → Zd be given by g(x) = f(rx).
Then g is an rM -Lip injection from Zd into Wp(Zd). By Theorem 1(c),
such an injection exists only for ω lying in some Pp-null set. �
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Proof of Proposition 5. (a) We assume without loss of generality that
D = d+ 1. Given p < 1, take r sufficiently large that a given r-clump
in ZD contains some open site with probability exceeding 1− (2D)−2.
By Theorem 2, there exists a 1-Lip map F : ZD−1 → Z+ such that
for all u ∈ ZD−1, the r-clump K(u,F (u)) contains some open site. By
choosing an arbitrary open site to represent each such clump, we obtain
a quasi-isometry of the required form.

(b) Let d ≥ D, and suppose that with positive probability there
exists a quasi-isometry from (Zd, ℓ1) to some subspace of (Wp(ZD), ℓ1).
We will prove that, for some p′ ∈ (0, 1) and M ≥ 1, there exists an
M -Lip injection g : Zd → Wp′(ZD), which will contradict (2).

Recall the parameters c = (c1, c2, . . . , c5) in the definition of a c-
quasi-isometry, and let Qc be the event that there exists a c-quasi-
isometry from (Zd, ℓ1) to some subset of (Wp(ZD), ℓ1). Since each Qc

is invariant under the action of translations of ZD, it has probability
0 or 1. Under the above assumption, the event

∪
c Qc has positive

probability. By the obvious monotonicities in the parameters ci, this
union is equal to the union

∪
c∈(Q∩(0,∞))5 Qc over rational parameters,

and hence there exists a deterministic c such that Qc has probability
1. We choose c accordingly, and let Fc be the (random) set of quasi-
isometries of the required type.

A quasi-isometry f ∈ Fc is not necessarily an injection, but, by
the properties of a c-quasi-isometry, there exists C = C(d,D, c) such
that, for all y ∈ Wp(ZD) we have |f−1(y)| ≤ C. Let r = C, and
take p′ ∈ (0, 1) sufficiently large that, with probability at least p, every
site in any given r-clump is p′-open. Let f ∈ Fc be such that: for
y ∈ f(Zd), every site in Ky is p′-open. Since the pre-image under f of
any y ∈ ZD has cardinality C or less, we may construct an injection
g : Zd → Wp′(ZD) such that, for y ∈ ZD, every x ∈ f−1(y) has
g(x) ∈ Ky, and furthermore distinct elements x ∈ f−1(y) have distinct
images g(x). It is easily seen that g is an M -Lip injection for some
M = M(d,D, c). �

5. Open Questions

5.1. Derive quantitative versions of Theorem 1. For example, fix
d,M, p, and let N = N(n) be the smallest integer such that there
exists an M -Lipschitz injection from the cube [1, n]d ∩ Zd to the open
sites of [1, N ]d ∩Zd with probability at least 1

2
. How does N behave as

n → ∞?

5.2. For which graphs G and which M is it the case that for p suffi-
ciently close to 1 there exists an M -Lipschitz injection from V (G) to
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the open sites of V (G) (where M -Lipschitz refers to the graph metric of
G)? Theorem 1(c) shows that for Zd, no M < ∞ suffices. On the other
hand, for the 3-regular tree, M = 2 suffices, by the well-known fact that
percolation on a 4-ary tree contains a binary tree for p sufficiently close
to 1.

5.3. We may interpolate between 1-Lipschitz and 2-Lipschitz maps as
follows. Let S be a subset of {−1, 0, 1}D, and let G be the graph with
vertex set ZD and an edge between u, v whenever u−v or v−u belongs
to S. For which d, D, and S does there exist an injection from Zd to
the open sites of ZD that maps neighbours in Zd to neighbours in G?

5.4. Does there exist a configuration η ∈ {0, 1}d such that, with posi-
tive probability there exists a Lipschitz embedding of η into the perco-
lation configuration ω on Zd? When d = 1, this is related to the main
problem of [7].
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