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Abstract

We consider the bond percolation model on the three-dimensional cubic
lattice, in which individual edges are retained independently with probabil-
ity p. We shall describe a subgraph of the lattice as ‘entangled’ if, roughly
speaking, it cannot be ‘pulled apart’ in three dimensions. We shall discuss
possible ways of turning this into a rigorous definition of entanglement.
For a broad class of such definitions, we shall prove that for p sufficiently
close to zero, the graph of retained edges has no infinite entangled sub-
graph almost surely, thereby establishing that there is a phase transition
for entanglement at some value of p strictly between zero and unity.

1 Introduction

Consider the bond percolation model on the three-dimensional cubic lattice, in
which individual edges are retained independently with probability p, and imagine
the retained edges as physical connections in three dimensions made of elastic. We
wish to say that a graph is ‘entangled’ if the corresponding elastic object cannot
be ‘pulled apart’ into two or more parts in three-dimensional space, perhaps
because it includes two linked loops of edges as in the graph illustrated in Figure
1. We shall be concerned with the question of whether or not the graph of retained
edges has an infinite entangled subgraph. This question has important physical
applications, in particular to models of polymers in solution, and has been studied
in [6] using partly non-rigorous methods. Our aim here is to approach the problem
from a mathematically rigorous standpoint.
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Figure 1: An example of an entangled graph.

We shall work throughout with the three-dimensional cubic lattice. As in
the theory of knots (see [7]), the entanglement of arcs is intrinsically a three-
dimensional affair. Our choice of the cubic lattice is largely a matter of conve-
nience, and other choices are possible.

We shall see that there are several possible ways of formulating a mathematical
definition of entanglement, and indeed, different definitions may be appropriate
to different applications. Given some definition of an entangled graph, one may
define the entanglement critical probability p., and it is natural to ask whether
the inequalities

O<pe <1

hold. Since (according to any reasonable definition of entanglement), any con-
nected graph is entangled, we expect the inequality

De < Pe,

where p. is the usual connectivity critical probability, and since we have p. < 1
this would establish the upper bound p, < 1. In [2], the authors describe how
their general method can be used to strengthen the above inequality to p. < p.
(although no explicit definition of entanglement is given). In [6], the authors
assert, on the basis of numerical work, that we have p. — ps ~ 1.8 x 10~7. If
true, this would imply the inequality p. > 0, since the value of p. is believed to
be approximately 0.249 (see [5], page 181), and for example we have the rigorous
bound p. > 1/5 (see [3], page 15). The aim of this paper is to give a rigorous
proof of the inequality
pe >0

which will apply under any reasonable definition of entanglement. (For the precise
statement, see Theorem 1 in the next section). Our approach will be to prove
that for p sufficiently close to zero, there is almost surely a surface homeomorphic
to a sphere which encloses the origin and does not intersect any retained edges.



We shall construct such a surface using techniques related to those in [1], using
the dual plaquette percolation model.

We remark that it may be tempting to conclude that the inequality p, > 0 is
‘obvious’. However, it should be noted that certain similar inequalities arising in
bootstrap percolation turn out to be false. For more details see [9].

The forthcoming publication [4] contains a detailed treatment of the various
possible definitions of entanglement, together with some further rigorous results
on entanglement percolation.

2 Statement of problem and results

We define Z2 to be the set of all 3-vectors of integers x = (1, T3, 73), and define
the cubic lattice to be

L={{z,y} CZ°: |z —yl| =1},

where ||-|| denotes Euclidean distance. We refer to the members of Z? as vertices
and the members of L as edges. The origin is the vertex O = (0,0,0). By a
graph we mean a non-empty set of edges G C L, and by a subgraph we mean
a non-empty subset of a graph. We say that a graph G contains a vertex x if
there exists e € G with x € e. We wish to consider a random subgraph K of
LL in which each edge of L is included with probability p, and distinct edges are
treated independently. To be precise, we define the sample space {2, = {0, 1},
equipped with the product o-field. For p € [0, 1] we define PI],L to be the product
measure on ), with parameter p. We define the random variable K by K(w) =
{e € L : w(e) = 1}. We shall refer to this set-up as the bond percolation
model with parameter p.

In the standard theory of connectivity percolation, one is concerned with the
connected components of the graph K. In particular, we define the connectivity
critical probability

pe = sup{p: P;,L(K has an infinite connected subgraph
containing O) = 0}.

It is straightforward to show that for p < p. we have

P(K has an infinite connected subgraph) = 0,
while for p > p. we have

PI],L(K has an infinite connected subgraph) = 1.

It can be shown that we have
0<p. <1,
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so that there is a genuine ‘phase transition’ between these two regimes. See [3]
(for example) for details.

Before giving any rigorous results about entanglement it is necessary to for-
mulate a precise definition. As mentioned in the introduction, the idea which we
wish to formalise is that a graph should be considered entangled if it cannot be
‘pulled apart’. However, we shall see that there are potentially several different
ways of formalising this notion, which give rise to different definitions of entan-
glement. We shall explain that our main result applies whichever definition we
choose.

We start with some notation. For a finite set A = {ay,...,ax} C R3, we
define the (closed) convex hull

(A) = {Z)\iaizog)\i < 1 for each ¢, and Z)‘izl}'

Note that if e € L is an edge, then (e) is the closed unit line segment which we
normally associate with e. For a graph £ C L we write [E] = [J,cp(e). For any
closed set R C R3 and any € > 0 we define the (open) e-neighbourhood of R,
which we denote by R!¢, to be the set of points at Euclidean distance strictly
less than € from R:

R = {2 € R :|lz — r|| < ¢ for some r € R}.

We shall make use of various topological objects, which we define here. By a d-
ball or d-sphere we mean a closed d-dimensional simplicial complex in R?* which
is homeomorphic to {z € R? : ||z|| < 1} or {z € R¥*! : ||z|| = 1} respectively.
(Loosely speaking, a simplicial complex is a compact set which is the union of
finitely many polyhedral pieces. See [8] for a definition.) We use the synonyms
point for 0-ball, arc for 1-ball, disc for 2-ball, ball for 3-ball, loop for 1-sphere
and sphere for 2-sphere. Let R be a d-ball and let ¢ be a homeomorphism from
{z € R¢ : ||z|| £ 1} to R. We define the boundary of R, written OR, to be the
(d — 1)-sphere ¢({z € R? : ||z|| = 1}). The interior of R is the set R\ OR. If
S is a sphere, we define its inside to be the bounded connected component of
R3 \ S, and its outside to be the unbounded connected component of R? \ S. If
S is a sphere and R is a subset of R?, we say that S separates R if R intersects
both the inside and the outside of S but does not intersect S.

We have already remarked that a subgraph of L consisting of two linked
loops should be regarded as entangled, and we can also give examples of infinite
subgraphs of IL, such as that illustrated in Figure 2, which should clearly be
regarded as entangled. However, for general infinite graphs the situation is not
so clear. To illustrate this, note that we must for example decide whether or not
we wish to regard each of the infinite graphs illustrated in Figure 3 as entangled.
Our approach will be based on the following observation. If £ C L is any graph



Figure 2: An infinite entangled graph.
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Figure 3: Are these graphs entangled?

which is entangled according to some ‘reasonable’ definition, then there exists
no sphere which separates [E]. This idea corresponds with the intuitive notion
of entanglement in the following way. If [E] were separated by a sphere S, we
could ‘shrink’ S and its contents, and then separate the graph into two parts
by moving the sphere a large distance away. Note for example that none of the
graphs illustrated in Figure 3 is separated by a sphere. It is important that we
require S to be a sphere, and not just any closed surface. To see this, note that if
FE is the graph in Figure 1, then there is a torus which ‘separates’ the two loops.

In order to formalise the above remarks, consider any set £ of graphs in L.
(We think of £ as a candidate for the set of all entangled sets according to some
definition). We say that £ is an e-system if the following properties hold.

(i) € contains every connected subgraph of L.

(ii) € is translation-invariant; that is, for every A € £ and = € Z* we have
A+zel.

(iii) If A € € then no sphere separates [A].

(iv) The event {K has an infinite subgraph lying in £ and containing O} is
measurable; that is, it lies in the usual product o-field.

We remark that condition (iv) in the above definition is indeed needed; one may
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construct sets £ which satisfy (i), (ii) and (iii) but not (iv). We claim that under
any reasonable definition of entanglement, the set of all entangled graphs is an
e-system. We stress that there are several families of graphs which fall into this
category (one simple example is the set of all graphs which are not separated
by any sphere). A detailed treatment of the possible definitions of entanglement
(which are related to the issue of ‘boundary conditions’) appears in [4]. The
results presented in this paper apply to any e-system.
For an e-system &£ we define the associated critical probability

pe(€) = sup{p : P)y(K has an infinite subgraph lying in £
and containing O) = 0}.
It is straightforward to check that the following statements hold. Using property
(ii), for p < pe(&) we have
L . . . . _
P, (K has an infinite subgraph lying in £) = 0,
while for p > pe(€) we have
L . . . .
Py (K has an infinite subgraph lying in &) = 1.

By property (i) we have pe(£) < p.. (Note that we shall make no further use of
properties (i) and (ii) of an e-system).
We are now ready to state our main result.

Theorem 1 Suppose £ is an e-system. Let py = 1/15616. For any p < py we
have

PI],L(K has an infinite subgraph lying in £ and containing O) = 0.

Hence we have
pe(g) Z Do-

Together with the above observations, Theorem 1 establishes that for any e-
system £ we have the inequalities

0 <pe(€) <1,

so that there is a genuine phase transition between the two regimes described
above.

Our approach to proving Theorem 1 will use property (iii) of an e-system;
we shall prove that for p sufficiently close to zero, almost surely with respect
to P, there is a sphere lying in R?* \ [K] with O in its inside. In order to do
this we introduce the notion of plaquette percolation (for more details see [1], for
example). We define the set

P = {{a,b,c,d} C Z3?: a,b,c,d are distinct and
la=bll =[lb—cll = llc—dl = ||[d - al| = 1};
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we refer to the members of P as plaquettes. If f is a plaquette, note that the
convex hull (f) is a closed square subset of R? of unit side-length. For a set of pla-
quettes F' C P we write [F] = J;c(f). In the plaquette percolation model
with parameter ¢ we consider a random subset ) of P in which each plaquette
is included with probability ¢, and distinct plaquettes are treated independently.
To be precise, we define the sample space Qp = {0, 1}¥, equipped with the prod-
uct o-field. For ¢ € [0,1] we define Pf to be the product measure on Qp with
parameter g. We define the random variable Q) by Q(w) = {f € P: w(f) = 1}.

The reason for introducing plaquettes is that there is a ‘duality’ relation-
ship between the plaquette and bond percolation models, which we shall de-
scribe briefly (for more details see [1]). Let L, be the ‘shifted’ cubic lattice L +
(1/2,1/2,1/2). For an edge e € L, let e, be the shifted edge e+ (1/2,1/2,1/2) €
L, . Note that for each edge e € L, there is a unique plaquette, which we denote
f(e) € P, such that (e, ) intersects (f(e)); f is a bijection from L to P. We make
the important further observation that f(e) is the unique plaquette such that (e)
intersects the 1/4-neighbourhood (f(e)){!/4}. Now suppose that p + ¢ = 1, and
write K for the shifted random graph K + (1/2,1/2,1/2) C L,. Clearly, we
may couple the measures P][],L and Pf in such a way that that any edge e € L
is included in K if and only if the corresponding plaquette f(e) is not included
in Q. By the above remark, under this coupling, the sets [K,] and [Q]{'/*} are
disjoint with probability one. Thus the plaquette model gives a useful way to
construct sets which lie in R® \ [K].

Our main result about plaquette percolation is Theorem 2, which states that
for a sufficiently high density of plaquettes, there is almost surely a sphere en-
closing a specified point which is contained in the set of plaquettes @) ‘thickened’
by distance 1/4. This result will be proved in Section 3.

Theorem 2 Let py = 1/15616. For any g > 1 — py, in the plaquette percolation
model with parameter g we have

]P? . . .
PP([QI™M* contains a sphere with the point (1/2,1/2,1/2)

in its inside) = 1.

(Note that the event mentioned in Theorem 2 is measurable, since it may
be expressed a countable union of events concerning spheres in particular finite
volumes, and these are cylinder events. Analogous arguments ensure the mea-
surability of all other similar events which we shall consider, and we shall not
generally make such arguments explicit.)

We now deduce Theorem 1 from Theorem 2.

PrRoOOF OF THEOREM 1 Suppose p < pg, and put ¢ =1 — p, so that ¢ > 1 — p,.
Applying Theorem 2, almost surely with respect to P, [Q]{!/*} contains a sphere,
S say, with (1/2,1/2,1/2) in its inside. Under the coupling described above, since
[Q]1/*} and [K ] are disjoint, S lies in R® \ [K,]. Now suppose that I were an
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Figure 4: A disc ‘spanning’ a block.

infinite subgraph of K lying in £ and containing O and let I, = I4+(1/2,1/2,1/2).
Since I, is unbounded, it must contain points in the outside of S, but I, also
contains (1/2,1/2,1/2), which lies in the inside of S, contradicting property (iii)
of an e-system. O

We observe that the proof of Theorem 2 which we shall give may be adapted
to give a quantitative probabilistic upper bound on size of the sphere enclos-
ing the origin, and hence on the size of the entangled component at the ori-
gin. Specifically, define the radius of a set R C R® containing the origin to be
sup{||z|| : z € R}. Our proof may be adapted to show that, for p < pg, the prob-
ability that K has a subgraph lying in £ and containing O with radius greater

than r is at most
o ar
X —_
Y| Qlogr)

(for suitable constants & = a(p) > 0 and ¢ > 0). An improvement to this bound
is derived (using another method) in [4].

3 Proof of Theorem 2

The purpose of this section is to prove Theorem 2 of the preceding section. We
shall start by briefly describing the ideas of the proof. The most important
step will be to show that if we consider a certain sequence of cuboid blocks in
R3? having identical shapes but varying sizes, then the probability that such a
block B is ‘spanned’ in the horizontal direction by a disc lying in [Q]{*/*} N B
which ‘separates’ the top and bottom faces is non-decreasing in the size of B,
for p sufficiently close to unity. Figure 4 illustrates the informal notion of a disc
spanning a block; an important part of the the proof will be to formulate an
appropriate formal definition. It will be deduced that for a certain sequence of
disjoint nested cubic ‘shells’ enclosing the point (1/2,1/2,1/2), the probability
that a shell contains a sphere separating its inside and outside is non-decreasing
in the size of the shell. It will follow that this point is enclosed by some sphere
almost surely.

Our approach is to build a large block from similar blocks of a smaller size,
and use discs spanning the smaller blocks to construct a disc spanning the larger
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Figure 5: The basic topological result.

block. We may arrange the construction so that (for some M) there are 2M
smaller blocks arranged in M pairs, such that the larger block is spanned by a
disc provided at least one smaller block from each pair is spanned by a disc. Thus
if each of the smaller blocks is spanned by a disc with probability 1 — € (where
¢ is small), the probability for the larger block is approximately 1 — Me?, which
is greater than 1 — € provided e is sufficiently small. This approach is related to
some of the techniques used in [1], but owing to the topological requirement that
the surfaces involved should be discs, more care is required than in [1].

The basic topological result which we shall require is that if we have two suit-
able overlapping blocks, spanned by discs in the horizontal and vertical directions,
then we can construct a new disc spanning the compound L-shaped volume (see
Figure 5). It might appear that such a disc can always be found as a subset of the
union of the two original discs, but this is false. For a counterexample, suppose
as in the diagram on the left of Figure 6 that both discs are basically ‘flat’ and
intersect in a line, except that the horizontal disc has a ‘finger’ protruding from
one side, the end of which crosses the vertical disc, intersecting it in a loop. It
is easily seen that the union of these two discs does not contain a disc with the
required properties. However, in this case, we may find a disc with the required
properties by passing to a neighbourhood of the union of the two discs (which
may be made sufficiently small as to remain within [Q]{'/*}) and then taking a
subset of this neighbourhood. In this way we may ‘cut off’ of the end of the finger,
replacing the cut end with a disc lying close to the vertical disc (see Figure 6). In
effect, we used a part of the vertical disc twice. It turns out that this argument
may be applied in the general case, as we shall see in Proposition 3. It is for this
reason that we need to use [Q]11/4} rather than [Q)].

We remark that it would be possible to reformulate our proof of the inequality
pe(€) > 0 in a way which did not involve plaquettes, referring instead simply to
discs and spheres lying in R? \ [K].

The proof of Theorem 2 depends on two topological results, Proposition 3



Figure 6: Dealing with a ‘finger’. In the lower pair of diagrams, a part of the
region seen in the upper pair of diagrams is viewed in cross-section.

and Proposition 4, which we shall state in this section, but whose proofs are
postponed until Section 4. The first of these results, Proposition 3, allows us to
construct a larger disc from two overlapping discs as described above. The proof
employs fairly standard topological techniques and is essentially a more general
version of the argument described above. The second, Proposition 4, is a similar
result which allows a sphere to be constructed from six overlapping discs.

The first step is to give a precise definition of a disc ‘spanning’ a cuboid block.
It will be convenient to do this in within a slightly more general framework, and
for this we shall require some new definitions.

Let S be a sphere. By a cycle on S we mean a finite sequence (A1, ..., A,) of
at least three discs lying in S whose interiors are pairwise disjoint, and such that
each of AyNAy, AyNAs,..., A,.NA; is a path. By convention we regard the cycle
(A1, Ag, ..., A,) as being equal to each of (Ay,..., A, A1) and (4,,..., Az, A;).
An example of a cycle is illustrated in Figure 7. If A = (A;,...,A,) and B =
(B1,...,B,) are two cycles such that Ay O By U---UBy, , A2 D By, ;1 U---U
By, ,..., A DB, 41 U---UBy (for some ti,...,t,) then we say that B is a
refinement of A. By a loop around H we mean a loop which is a union of the
form vy U{z12} Urs U {ze3}U...Ur, U{x,1} where v; is the interior of an arc, v;
lies in the interior of C;, and z;; is a point lying in the interior of the arc C; N Cj.
Note that if B is a refinement of A then any loop around B is also a loop around
A. A loop around a cycle is illustrated in Figure 7.
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Figure 7: A cycle on S and a loop around the cycle.
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Figure 8: The cycles .A and B in Proposition 3.

Let H be a ball, and let A be a cycle on H (in particular, one should keep
in mind the case where H is a cuboid, and .4 consists of rectangles covering the
four vertical faces of 0H, as illustrated in Figure 9). A disc in H across A is a
disc D C H with 0D = D N 0H and such that 9D is a loop around A.

Let H be a ball and suppose that A = (Ay,...,A4,) and B = (By,...,B,)
are two cycles on 0H. We wish to describe the situation illustrated in Figure 8.
Thus we say that A and B are compatible if the following statements hold. The
discs Aq,..., A, By,..., B, have pairwise disjoint interiors, except that there
exist discs I and J such that I = A, = B, and J = A; = B,, for some r,t, u, w.
Furthermore, 01 is the union of four paths 7, ... 74 which intersect only at their
end points in numerical order, such that vy = INA,_1, v3 = INA;11, 72 = [INB,_1
and v4 = I N A1, so that we might say that A and B ‘cross’ at I. We also
require that the corresponding condition also holds at J.

Suppose A and B are compatible, and let A, B be members of A, B respectively
which are not equal to I or J. We define AV B to be the cycle on 0H formed by
joining together in the obvious way the subsequence of A starting at [ including
A and ending at J, and the subsequence of B starting at J including B and ending
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(a,b,c)

a

Figure 9: The cycle H,(a,b,c).

at I. (This is a slight abuse of notation since the definition depends on the choice
of A and B). Thus if A = A, and B = B, where r < s < tand u < v < w, we
have AV B = (I,AT+1,---;As,---;At—I,J,Bw—la---,Bva---,Bu-i—l)-

Proposition 3 Let H be a ball and suppose that A and B are compatible cycles
on 0H, and let I and J be as above. Choose A and B and define AVB accordingly.
If X is a disc in H across A, and Y is a disc in H across I3, then for any e > 0
there exists a disc in H across AV B which lies in (X UY){<n H.

See Section 4 for a proof.

We define the block H(a,b,c;d,e, f) = [a,d] x [b,e] x [c, f] C R3; we also
write H(a,b,c) = H(0,0,0;a,b,c). If s divides a and t divides b, we define the
cycle H,4(a, b, c), which we will write as H,; when there is no risk of confusion,
to be the cycle on 0H (a,b,c) consisting of rectangles covering the z-z and y-z
faces of the block, where the rectangles have z-dimension ¢, and z-dimension s or
y-dimension ¢ respectively, as in Figure 9. (Here and subsequently the symbols
x,y and z are used to refer to the 1,2 and 3 coordinate directions respectively).

Let h be a positive integer. We define the blocks

Fy(h) H(—2h, —2h, —2h; 2h, 2h, —h)
Fy(h) = H(—2h,—2h, —2h;2h, —h,2h)
Fy(h) = H(—2h,h,—2h;2h,2h,2h)
Fy(h) = H(—2h,—2h, —2h; —h, 2h,2h)
Fs(h) = H(h,—2h, —2h;2h, 2h, 2h)
Fs(h) H(—2h, —2h, h; 2h, 2h, 2h)

Thus Fi,..., Fs form the six overlapping ‘faces’ of a cubic shell of side-length

4h and thickness h (see Figure 10). Define U(h) = F; U---U F5 and S(h) =
FiyU---U Fg. Since Fi, ..., Fy are all congruent to H(4h,4h,h), we may define
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Figure 10: The faces F;(h).
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Figure 11: The set U and the cycle U.

Fi(h) to be the cycle on OF; corresponding to Hy (4h, 4h, h). Also let U be the
cycle on QU consisting of 12 h-by-h squares covering the annulus face of U in the
x-y plane. Figure 11 is an illustration of U and U.

Our second topological result is similar to the first; again, a proof will be
given in Section 4.

Proposition 4 Let h be a positive integer. If X is a disc in Fg across Fg, and
Y is a disc in U across U, then for any € > 0 there exists a sphere lying in
(X uY){ NS with the origin in its inside.

We shall now make use of the preceding results in the context of the plaquette
model. For any compact set C C R?® (in particular for C a block), define the set
of plaquettes

P(C)={uvelP:[u] CC, [u] ZoC},

13



>

Hy

16h

Figure 12: The construction for Lemma 6.

and the random subset of R?
W(C) = [QNPO)Y*4 ncC.

If C is a ball and A is a cycle on 9C, let D(C; . A) be the event that W (C') contains
a disc in C across A. Note that D(C;A) is an increasing cylinder event defined
on the finite set of plaquettes P(C). In particular, we write

Mg(a,b,c;5,t) = Py (D(H(a,b, c); Hsy)).

Lemma 5 We have
I1,(32,8,2;2,2) > ¢**°.

PrROOF The event D(H(32,8,2);Hy ) occurs if all 32 x 8 = 256 z-y plaquettes
of P(H(32,8,2)) lie in Q. O

Lemma 6 For any positive integer h we have
I1,(16h, 4h, 2h; 4h,2h) > 1 — (1 — [,(16h, 4k, h; h, h))*.

PRrROOF We shall show that I1,(16h,4h, 2h; h, h) > 1 — (1 —I1,(16h, 4k, h; h, h))?;
the result then follows because Hj , is a refinement of Haup .

The construction is illustrated in Figure 12. Consider the two congruent
blocks H; = H(16h,4h,h) and Hy = H(0,0, h; 16h,4h,2h); note that Hy U Hy =
H(16h,4h,2h). We write Hy = Hp 5 (16h,4h, h), and we write H, for the corre-
sponding cycle on Hsy, Hy = Hy,(16h,4h,h) 4+ (h,0,0). Any disc in H; across
H, is also a disc in Hy U Hy across Hy, ,(16h, 4k, 2h), and so also is any disc in Hy
across Hy. The result now follows from the observation that P(H;) and P(H,)
are disjoint, so D(Hy;H;) and D(H,;H;) are independent; the right-hand side
of the inequality is the probability of their union. O

Lemma 7 For any positive integer h we have
I1,(64h,16h,4h;4h,4h) > T1,(16h,4h,2h;4h,2h),
and  T1,(16h,16h,4h;4h,4h) > T1,(16h, 4h,2h;4h,2h)"".
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Figure 13: The construction for Lemma 7.

PrRoOF The construction is illustrated in Figure 13. Define the following se-
quence of congruent overlapping blocks in H(64h, 16h,4h).

C, = H(0,0,0;4h,16h, 2h)
C, = H(2h,0,0;4h, 16k, 4h)
Cy = H(2h,0,2h;6h, 16k, 4h)
Ci = H(4h,0,0;6h, 16k, 4h)
Cs = H(4h,0,0;8h, 16k, 2h)

061 = H(60h, 0, 0, 64h, 16h, Qh)

Let C; be the cycle Hopan(4h,16h,2h) on OC;. Since the C; are all congru-
ent, let C; be the corresponding cycle on 9C; for each i. We shall show that
D(H (64h, 16k, 4h); Hap 4n) occurs provided (oL, D(Ci; C;) occurs, and the first
required inequality then follows from the FKG inequality (see (3], page 27). The
proof of the second inequality is identical except that we take only the first 11 of
the CZ

Our approach is to make repeated use of Proposition 3 as follows. We first
show that provided D(Cy;Cy) and D(Cy;Cy) occur, for a suitable cycle C; V Cy on
0(C1 U (Cy), the event D(C; U Cy;Cy V Cs) occurs. We then apply the proposition
again to C; V Cy and C; to show that provided D(Cy U Cy;Cy V Cy) and D(Cs;Cs)
occur then for a suitably chosen cycle C; V Cy V Cs, the event D(C; UCy UCs;Cy V
CyVCs) occurs. We continue until we have a disc in [JI-, C; across a cycle \/oL, C;.
This is also a disc in H(64h,16h,4h) across \/?il C;, and this latter cycle can be
chosen so that it is a refinement of Hap, 45(64h, 16h, 4h), so the result will follow.

We shall describe in detail only the first step of the construction, the others
being similar. See Figure 14 for an illustration. Suppose that D(Ci;C;) and
D(Cs;Cy) occur. Then since C; and Cy are also cycles on 9(Cy U Cy), the events
D(C1UC5;Cy) and D(CyUCy;Cy) occur. Now let X and Y be two discs ‘demon-
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Figure 14: The first step in the proof of Lemma 7.

strating’ these two events, and let ¢ be half the distance between the compact
sets X UY and (C;UCy) \ W(C,UCy) (e is positive since these sets are disjoint).
The cycles C; and Cy are compatible, so we may now apply Proposition 3, with
(in the notation of that proposition) H = C; U Cy, A =Cy, B =Cy, and C; V Cy
being the cycle which consists of four rectangles on each of the extremal faces of
C1U (5 in the negative x and positive z directions, together with three 2h by 2h
squares on each of the two ‘L’-shaped -z faces (see Figure 14). We obtain a disc
across this cycle which, by the choice of ¢, lies in W(C; U Cy). We now continue
as described above. O

Lemma 8 For any positive integer h we have
P,(D(U(h);U(h))) > T, (4h,4h, h; h, h)°.

PrROOF The result may be proved in a similar way to the previous lemma, by
showing that D(U;U) occurs provided (\._, D(F;; F;) occurs. Again we do this
by ‘adding’ one block at a time (in the order Fi, ..., F5) using Proposition 3. The
cycles at intermediate steps are chosen so as to ensure that \/?:1 Fi=U. O

We are now in a position to prove the main result of this section.
PROOF OF THEOREM 2 For given ¢, and n a nonnegative integer, define
T =11,(32-4",8-4",2.4";2. 4" 2. 4™),
By Lemma 6 and the first inequality of 7 we have

Tnt1 > f(m,) where
flw) = (1-@1Q-u)*)™

Since f(1) = 1 and f’(1) = 0, there exists some 0 < w < 1 such that if u > w
then f(u) > w. Let g = w'/?%, so that if ¢ > ¢y then by Lemma 5 we have
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mo > w, hence 7, > w for all n. (An explicit calculation shows that we may take
go = 1 —1/15616). Hence by the second inequality of Lemma 7 we also have for
all n,

I1,(8-4",8-4",2.4",2.4" 2.4") > w.

Let A, be the event that W (S(2-4™)) contains a sphere with origin (or equiv-
alently the point (1/2,1/2,1/2)) in its inside. Then by Proposition 4, A,, occurs
provided D(U;U) and D(Fg; Fg) occur. By Lemma 8 and the FKG inequality,
this occurs with probability at least I1,(8-4™,8-4",2-4";2-4™ 2-4™)% 50 if ¢ > qo
then P,(A,) > w® > 0 for all n. Hence since the events A, are independent we
have P,(A, occurs for some n) = 1, completing the proof. O

We remark that the constant py = 1/15616 is almost certainly not the best
possible; that is, our argument could be made to work for some larger py. How-
ever, it seems unlikely that any value so obtained would be large enough to
provide a useful numerical lower bound on p,.

4 Proofs of topological results

In this section we shall prove the two topological results, Propositions 3 and
4. We shall employ the method of ‘surgery’, and we shall make frequent use of
several standard topological theorems (such as the Schonflies Theorem; [7], page
19), which are intuitively plausible but non-trivial to prove. We shall present
the arguments in a slightly informal way, in the sense that we shall not generally
make explicit references to such theorems; these references would be lengthy but
uninformative. This approach is common in the topology literature - see for
example [7], Chapter 2. It is hoped that the arguments presented in this way will
serve a two-fold purpose: to the reader unfamiliar with the relevant topological
ideas, they should provide an intuitively plausible justification of the results;
while to the topological expert they should constitute a rigorous proof. Detailed
justification of the topological steps may be found for example in [8].

The following topological ingredient of the proofs deserves special mention.
We shall make extensive use of transversality (or general position). Roughly
speaking, this is the assertion that if we have a number of intersecting simplicial
complexes in R?, and if we are allowed to deform them by a small amount,
then we may assume that all their intersections are of ‘canonical’ type, with no
‘coincidences’ such as three paths in a surface having a common intersection, or
two surfaces touching tangentially. For more details see for example [8].

PROOF OF PROPOSITION 3 Without loss of generality (by deforming X and Y
by a small amount if necessary within (X UY){¢ N H), we may assume that X
and Y intersect only transversely. Hence X NY is a 1-dimensional manifold with
boundary (X NY) = 0X N Y. By considering the intersections of X and 9Y
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Figure 15: The intersections of 0X and 0Y'.

with I and J, we see that 0. X NJY must be the union of an odd number of points
in the interiors of each of I and J (see Figure 15). Thus X NY is the union of
finitely many components of the following types (the finiteness follows from the
fact that X and Y are simplicial).

(i) Loops
(ii) Arcs with both ends in one of I or J

(iii) Arcs with one end in each of I and J.

We shall show that by making alterations to Y we may ‘remove’ all components
of types (i) and (ii).

Consider X NY as a subset of X (see Figure 16 for an illustration). Note that
X NI and X NJ are a pair of disjoint arcs lying in 0X. Suppose that there is
at least one component of type (i), and let « be an innermost such component
on X, bounding a disc D in X. The requirement that o be innermost ensures
that the interior of D has no intersections with Y. We form a new surface from
Y as follows. Remove a small annulus neighbourhood of o in Y, and add two
slightly shifted copies of D with their boundaries coinciding with those of the
annulus, one on each side of D (see Figure 17). Let Y’ be the resulting surface.
We have in effect ‘cut’ Y along a loop and glued two discs to the cut edges.
Hence Y’ must have two disjoint components: a disc with the same boundary
as Y, and a sphere. Let Y” be the disc component. Now Y” is a disc across
B, and X N Y" has strictly fewer components than X NY, and provided the
alteration was sufficiently ‘small’, Y lies in (X UY){ N H. We may repeat this
construction until all components of type (i) have been removed.

Now assume that there are no components of type (i), but that there is at
least one component of type (ii). Let § be such a component closest to X on
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Figure 16: Components of X NY.

Figure 17: Removing a loop component of X NY.
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Figure 18: Removing a path component of X NY.

Figure 19: The effect on 0Y of removing a path component of X NY".

X, and suppose without loss of generality that both ends lie in I. There exists a
path 6 C 0X N I joining the two ends of 3, which does not intersect Y. Let D
be the disc in X bounded by 3 U 6 (see Figure 18). We alter Y in a way similar
to before; remove a small neighbourhood of # (which is a long thin disc), and
add two slighlty shifted copies of D, as illustrated in Figure 18. Let Y’ be the
resulting surface. Since we have in effect cut Y along a path joining two points
on the boundary, Y’ must be the union of two disjoint discs, and 9Y” is equal
to Y with two short paths removed and two copies of 6 added. Since 9Y and
dY" differ only in a small neighbourhood of 6, by considering their intersection
with I, it may be seen that one component of Y’ must be a loop around B (see
Figure 19). Let Y” be the component of ¥’ bounded by this component of 0Y".
Now X NY” has fewer components than X NY, and Y” lies in (X UY){d nH
provided the alterations were small enough.

After repeatedly applying the arguments above, we may assume that X NY
has no components of type (i) or (ii). Since each of I and J must contain an odd
number of points of (X NY’), there must be at least one component of type (iii).
Consider X NY as a subset of X, and let v be the component of type (iii) nearest
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Figure 20: The choice of the path ~.

Figure 21: The boundary of Xny.

to 0X N A on X (see Figure 20). Now v cuts X into two discs; we let X be the
one which contains 0X N A. Similarly v cuts Y into two discs; we let Y be the
one which contains Y N B. Now X NY is precisely 7, so X UY is a disc; and it
is easily seen that its boundary is a loop around A v B (see Figure 21). a

PROOF OF PROPOSITION 4 The proof is similar to the above. Let L be the
straight line segment path joining the origin to the point (0,0, 3h) (see Figure
22). Note that any sphere lying in S which intersects L transversely in an odd
number of points must have the origin in its inside. Without loss of generality
(after deforming by a small amount if necessary), X, Y and L intersect pairwise
only transversely, and X N'Y N L is empty. Now L must intersect X in an odd
number of points, since we may extend L outside Fg to a loop which is linked
with 0X (see Figure 23). Note that X NY is a 1-dimensional manifold with no
boundary, and hence is a union of finitely many disjoint loops. Consider X N'Y
and X N L as (disjoint) subsets of X (see Figure 25). Observe that each point
of X N L must be enclosed (on X) by at least one loop of X NY. Indeed, if not
we could find a path in X joining a point on L to a point on X which did not
intersect Y, and this would enable us to construct a loop linked with Y but not
intersecting Y, a contradiction (see Figure 24).
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Figure 22: Objects used in the proof of Proposition 4.
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Figure 23: Extending L to a loop which is linked with 0.X.

Figure 24: Using a path in X to construct a loop linked with 9Y.
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Figure 25: Intersections of X with L and Y.
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Figure 26: Removing a component of Xnvy.

By a simple counting argument, it follows from the above observations that
there must be some loop of X NY enclosing (on X ) an odd number of points of
X NL. Let a be such aloop (see Figure 25). Let X be the disc in X bounded by

« and let Y be the disc in Y bounded by a. Note that the discs X and Y have
the following properties.

(i
(ii
(iii
(iv
Note that the number of points in (iv) is in fact zero, since Y N L = §); in what
follows we shall use the statements (i)—(iv) as induction hypotheses, and this
number may then become non-zero.

If X NY consists only of o, then X UY is a sphere which intersects L in an
odd number of points, so we are done. Otherwise we shall show that by altering
Y we may strictly reduce the number of components of X NY while ensuring
that conditions (i)—(iv) still hold, so the result will follow by induction.

Suppose [ is a loop of X NY innermost on X. We remove [ as in the previous
proof by removing a small annulus neighbourhood of 5 in Y and replacing it with
two discs to obtain a new surface Y’. Let y be the number of points of Y nl,
and let b be the number of points of X N L enclosed by # on X; then it is
easily seen (see Figure 26) that Y’ N I consists of exactly y + 2b points, an even
number by condition (iv). As in the previous proof, the surface Y’ must have
two components; a sphere, and a disc with boundary «. If the sphere has an odd

number of intersections with L, we are done; otherwise let Y” be the disc. Now
it is easily seen that conditions (i)—(iv) hold with Y” in place of Y. O

) X and Y are subsets of (X UY){d NS
)aCXNY

) X intersects L in an odd number of points
)Y

intersects L in an even number of points (see note below)
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