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Abstract

We review recent progress and open problems in entanglement and
rigidity percolation.

1 Introduction

Percolation models are of interest both for the wide range of their physi-
cal applications and for the mathematical challenges which they present. In
the basic model, edges of the d-dimensional cubic lattice are independently
deleted with a fixed probability, and the connectivity properties of the result-
ing graph are studied. One natural way to extend this model is to consider
other graph properties in place of connectivity. Two such properties of par-
ticular interest are entanglement and rigidity. Loosely speaking, the meaning
of these terms is as follows. A graph in three-dimensional space is entangled
if it cannot be ‘pulled apart’ when the edges are regarded as physical con-
nections made of elastic. A graph is rigid if it cannot be ‘deformed’ when
the edges are regarded as solid rods which can pivot at the vertices. These
intuitive notions will be formalised later.

Entanglement and rigidity in percolation are of interest for several rea-
sons. Firstly, they have important physical applications; specifically, en-
tanglement is relevant to the study of polymers in solution, and rigidity is
relevant to the study of glassy materials; see [16], [15] for details. Secondly,
certain standard percolation results appear to require novel methods of proof
in the case of entanglement or rigidity. Thirdly, there is the possibility of



new types of behaviour not found in the connectivity case; in particular it
appears that boundary conditions may play a non-trivial role.

The purpose of this article is to provide an introduction to the subject
with a minimum of technical detail, and to describe known results and open
problems. For more detail the reader is referred to the following papers. For
entanglement, the most comprehensive treatment is in [7]; existence of a non-
trivial phase transition is proved in [13] and [1]; uniqueness of the infinite
cluster is proved in [9]; details of the physical applications may be found in
[16]; other review-type material appears in [4] and [5]. For rigidity, the model
is introduced [12]; uniqueness is proved in [8]; results on boundary conditions
are proved in [11]; physical applications are described in [15]. Details of the
mathematical theory of graph rigidity may be found in [3].

This article is organised as follows. The percolation model and basic no-
tation are introduced in Section 2. Entanglement and rigidity are defined in
Sections 3 and 4 respectively. The existence of phase transitions is discussed
in Section 5. In Section 6 we give results on uniqueness of infinite clusters,
and in Section 7 we discuss results on boundary conditions.

2 Percolation

The percolation model is defined as follows. Let L be an infinite connected
graph. For our purposes, L will be either the d-dimensional cubic lattice Z?
(with nearest-neighbour edges), or the two-dimensional triangular lattice T.
(T is a planar graph with six equilateral triangles meeting at each vertex).
Given a parameter p € [0,1], each edge of L is declared open with prob-
ability p, and closed otherwise, with distinct edges receiving independent
declarations. The resulting probability measure is denoted F,, and a typical
configuration of open and closed edges is denoted w.

Let A be a set of subgraphs of L. We think of A as being the set of all
graphs having a certain property. The motivating example is

C = {all connected subgraphs of L}.
We shall be concerned also with

& = {all entangled subgraphs of L}
and

R = {all rigid subgraphs of L}.
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(We shall give precise definitions later). By an A-graph we mean a graph
lying in A, and by an A-subgraph of a graph we mean a subgraph which is
an A-graph. An A-component of a graph G is a maximal A-subgraph of
G. Thus the C-components of a graph are simply the connected components
in the usual sense. An A-cluster is an .A-component of the (random) graph
of all open edges of L.

The usual theory of percolation is concerned with the study of C-clusters.
For a distinguished vertex O of L, we define

6(p) = Py(there is an infinite C-cluster containing O),

and the critical point
pe = sup{p : 0(p) = 0}.

Details of percolation theory may be found in [6].

3 Entanglement

Our study of entanglement percolation is restricted to the case L = Z3. As
in the theory of knots (see [17]), the entanglement of graphs is intrinsically
three-dimensional. The choice of the cubic lattice is a matter of convenience,
and other choices are possible.

We associate a subgraph of Z?3 with a subset of R? in the following natural
way: each vertex is a point in R?, and each edge corresponds to a straight
line segment joining its two vertices. We define entanglement first for finite
graphs, as follows. A sphere is a piecewise-linear subset of R® which is
homeomorphic to a topological 2-sphere. We say that a sphere S separates
aset R C R? if R intersects both path-components of R\ S, but not S itself.
We say that a finite subgraph G of Z?3 is entangled if it is separated by no
sphere. We write

&p = {all finite entangled subgraphs of Z*}.

It is clear that any finite connected graph is entangled. The simplest non-
connected entangled graph consists of two linked loops of edges. Let e, be
the number of £p-graphs with exactly n edges containing O. It is an open
problem to determine whether e, grows exponentially with n, or faster.
There are several natural ways to extend the definition of entanglement to
infinite graphs. We discuss this further in Section 7 on boundary conditions.
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For now, we adopt the following natural definition:

E =
{G : every finite subgraph of G is contained in some Ep-subgraph of G}.

E-components and £-clusters are defined as in Section 2. It may be shown
that the edge sets of the £-components of a graph partition the edge set of
the graph. We define

n(p) = Py(there is an infinite £-cluster containing O),

and
pe = sup{p : n(p) = 0}.

4 Rigidity

Our study of rigidity percolation is restricted to the case L = T, the two-
dimensional triangular lattice. Graph rigidity becomes much more compli-
cated in three and higher dimensions (see [3]). In two dimensions, the most
obvious choice, Z2, is of no interest because Z? itself is not rigid. The pla-
narity of T plays an important role in some of the proofs to be discussed.

We define rigidity first for finite graphs. There are several different defi-
nitions available, but we shall restrict our attention to so-called generic two-
dimensional rigidity. An embedding of a finite graph G is an injective map
r from the vertex set to R?. A motion of the pair (G,r) is a one-parameter
differentiable family of embeddings (r;)o<t<1 of G, containing r, which pre-
serves all edge lengths; that is

||r¢(x) — ri(y)]|| is constant in ¢

whenever (z,y) is an edge. A motion is rigid if the above statement holds
for every pair of vertices x,y. The pair (G,r) is said to be rigid if all of its
motions are rigid motions. It may be shown that for any GG, under a natural
measure on the set of embeddings, either (G, r) is rigid for almost all r, or
(G, r) is not rigid for almost all 7 (see [3]). We therefore say that G is rigid
if the former holds, and define

Rr = {all finite rigid subgraphs of T}.



It may be seen that, for example, a triangle is a rigid graph, whereas a square
is not. It may be shown that every finite rigid graph is connected.
We extend the definition of rigidity to infinite graphs as follows:

R =
{G : every finite subgraph of G is contained in some Rp-subgraph of G}.

R-components and R-clusters defined as in Section 2. It may be shown
that the edge sets of the R-components of a graph partition the edge set of
the graph, although two different R-components may share a vertex. For a
fixed edge e of T we define

&(p) = Py(there is an infinite R-cluster containing e),

and
pr = sup{p: ¢(p) = 0}.

5 Phase Transitions

The most fundamental result of percolation theory is that for a wide range of
graphs L (including T and Z¢, for d > 2), we have 0 < p, < 1, so that there
is a non-trivial phase transition. In this section we discuss corresponding
results for entanglement and rigidity.

For entanglement we have the following.

Theorem For L =72 we have
0 < pe < pe-

The former inequality is proved in [13]. Such inequalities are usually proved
by simple path-counting methods - here it appears that a more complicated
argument is required. The approach in [13] is to show that for p sufficiently
small there is almost surely a topological sphere which encloses O and which
does not intersect any open edges. The topological aspect adds significant
complications to the proof. A related open problem is the following. In the
‘plaquette percolation model’, which is the natural dual to bond percolation
on Z3, is it the case that for sufficiently high density of plaquettes, there is a
sphere of plagettes enclosing O? For more details see [7].



The inequality p, < p. is immediate from the fact that C C £. The cor-
responding strict inequality follows from an argument in [1]. The key idea
is to find a local rule for adding open edges to a configuration (called an
enhancement), with the property that it can affect the large-scale connec-
tivity properties of the configuration, but not the large-scale entanglement
properties.

An intriguing unsolved problem is to obtain good rigorous bounds on the
numerical value of p,. At present the only rigorous bounds are as follows. In
[13] it is proved that p, > 1/15616. The technique used to prove p, < p. in
[1] may be used to obtain rigorous lower bounds on the difference p. — pe,
but such bounds are extremely small (of the order 107'%). The numerical
value of p, for Z3 is believed to be approximately 0.249 ([14]), and it easy to
obtain the rigorous bound p. > 1/5 ([6]).

Another open problem is to prove that the size of the £-cluster at O has
exponentially decaying tails for p < p.. So far the best result in this direction
is the following, proved in [7] using an extension of the methods in [13]. For
p sufficiently small, the probability that the radius of the £-cluster exceeds r
is at most exp[—a(p)r/logr|, where a(p) > 0. Indeed, the logarithm in this
expression may be replaced with any iterate of logarithm (for suitable «).

For rigidity we have the following.

Theorem For L =T we have
pe < pr < 1.

Both inequalities are proved in [12]. The proof of the former uses the tech-
nology of [1]. In this case, the idea is to find a rule for removal of open edges
(a ‘diminishment’), which can affect the connectivity properties but not the
rigidity properties of the configuration.

6 Uniqueness

It is a standard result that for L = Z¢ (or T), and any p, there is at most
one infinite C-cluster almost surely. In this section we discuss extensions to
entanglement and rigidity.

For entanglement, the following is proved in [9].

Theorem For L = 73 and p > p., there is exactly one infinite €-cluster
almost surely.



It is unknown how many infinite £-clusters there are when p = p,; by stan-
dard arguments (originating from [18]) the answer is one of 0, 1 or co almost
surely.

The proof of the above theorem uses an interesting combination of the
idea of ‘monotonicity of uniqueness’ (as in [10]) with the technology of [2].
The basic idea is as follows. Consider the usual coupling of the percolation
model with two different parameters (p. <)p; < ps. Define a new graph as
follows. Augment the set of open edges at level py by adding an extra edge
between very pair of vertices which are in the same £-cluster at level p;. The
method of [2] may be used to show that this graph has a unique infinite C-
cluster. Using ideas from [10], it may be shown that every infinite £-cluster
at level p, contains an infinite £-cluster at level p;. Combining these facts
yields uniqueness of the infinite £-cluster at level p,.

For rigidity, the following stronger result is proved in [8].

Theorem For L = T and all p, there is at most one infinite R-cluster
almost surely.

(A weaker version of this result was obtained earlier in [12]). The proof in
[8] makes use of the planarity of T, and involves ‘surrounding circuits’.

7 Boundary Conditions

The study of boundary conditions may be motivated as follows. Instead
of considering infinite clusters in the infinite graph L, we concentrate on
a large finite portion of L, and consider the limits of quantities of interest
as the size of this finite portion increases. The question then arises of how
the boundary of the finite portion should be treated, and different choices
may in principle give different results. Two extremal choices are ‘free’ or
‘0’ boundary conditions, in which all external edges are declared closed, and
‘wired’ or ‘1’ boundary conditions, in which all external edges are declared
open. The questions which arise are of interest both mathematically and in
the context of applications.

For L equal to Z¢ or T, let B, be the graph of all vertices and edges within
graph-theoretic distance n of O. (B, takes the form of a hypercube for Z?,
and a hexagon for T). Given a configuration w, we define new configurations
wt for i = 0,1 as follows. On B,, w! agrees with w, while outside B, all
edges are declared closed if 7 = 0, and open if 1 = 1. Fix w, and suppose A
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is one of C,£,R. We say that a graph G is an A%-cluster (of w) if it is an
increasing limit of a sequence of graphs G,,, where G,, is an A-cluster of w?.
We say that a graph G is an A'-cluster (of w) if it is a decreasing limit of
a sequence of graphs G, where G,, is an A-cluster of w!. An A’-cluster may
be interpreted as ‘an A-cluster when boundary condition i is applied’.

In the case of connectivity, it is straightforward to see that boundary
conditions have have only trivial effects. The concepts of a C-cluster and
a C%-cluster coincide (for every w). Turning to C'-clusters, every finite C°-
cluster is also a C!-cluster, while the union of all infinite C%-clusters (if there
are any) forms a single C'-cluster. Since in the percolation model (on Z¢
or T) there is at most one infinite C-cluster almost surely, this implies that
C%-clusters and C!-clusters coincide almost surely.

The situation is more complicated in the case of entanglement. It turns
out that the concepts of an E£-cluster and an £%cluster coincide. £!-clusters
can be interpreted in the following way. Define

&' ={G : G is separated by no sphere}.

We have £ D &, but the sets are not equal. The simplest graph in &£’ but
not in £ consists of two disjoint doubly-infinite paths. It turns out that
the concepts of an &'-cluster and an £'-cluster coincide. In contrast with
the connectivity case, there exist configurations for which there is an infi-
nite £!-cluster but no infinite £%-cluster (see [7] for examples). The question
therefore arises whether such configurations can actually occur in the perco-
lation model.
The above question may be addressed as follows. For i = 0,1 define

n'(p) = Py(there is an infinite £'-cluster containing O),

and
p, = sup{p : 77'(p) = 0}

(Thus, n° = n and p? = p.). It is straightforward to show that n° < n',
and therefore p} < p2. The proof that p > 0 in [13] also gives p, > 0. The
question is whether or not p? = p!. More generally, for what values of p does
n°(p) = n'(p) hold? There has been little progress on these questions. In [7]
it is proved that n°(p) = n'(p) for p sufficiently close to 1.

There has been more progress on the analogous problems for rigidity
percolation on T. Again, the concepts of an R-cluster and an R°-cluster



coincide. As with entanglement (but not connectivity), there exist config-
urations for which there is an infinite R!-cluster but no infinite R°-cluster
(see [11]). We define

¢'(p) = P,(there is an infinite R'-cluster containing e),

and ' .
p; = sup{p : ¢'(p) = 0}
(so that ¢° = ¢ and p? = p,).
The following is proved in [11].

Theorem We have p° = pl(= p.). Furthermore, ¢°(p) = ¢'(p) except
possibly at p = p..

As a corollary of this and the uniqueness of the infinite R°-cluster (Section
6), it may be shown that R°-clusters and R!-clusters coincide almost surely,
except possibly when p = p.. In other words, boundary conditions have no
effect except possibly at the critical point.

Here is a sketch of the ideas behind the proof the above theorem. Define
the number of degrees of freedom of a finite graph to be the minimum number
of edges which must be added to make the graph rigid. If ¢'(p) > ¢°(p)
then there is an infinite R!-cluster, I' say, which is not a single R°-cluster.
Furthermore, it may be shown that there is a positive density of edges of T
whose addition would reduce the number of degrees of freedom of (a finite
approximation to) I'. If it were the case that ¢' > ¢° throughout some
interval, Russo’s formula would imply that I’ must have (in an appropriate
sense) a positive density of degrees of freedom per unit area. But this gives a
contradiction, since for a large box B,,, only O(n) edges (around the boundary
of B,) need to be added to make I' N B, rigid.

The results mentioned above lead to partial information about the conti-
nuity of ¢° and ¢'. Specifically, exactly one of the following must hold.

(i) ¢° and ¢! are equal everywhere and continuous everywhere;

(ii) ¢° and ¢' are equal everywhere and continuous except at p,, where
both are right-continuous;

(iii) ¢° and ¢' are equal and continuous except at p;, where they are un-
equal, and ¢! is right-continuous while ¢° is left-continuous.

It is a fascinating unsolved problem to determine which of (i)—(iii) is correct.
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