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Abstract

Let Π be an ergodic simple point process on R
d, and let Π∗ be its

Palm version. Thorisson [13] proved that there exists a shift coupling

of Π and Π∗; that is, one can select a (random) point Y of Π such that
translating Π by −Y yields a configuration whose law is that of Π∗.
We construct shift couplings in which Y and Π∗ are functions of Π,
and prove that there is no shift coupling in which Π is a function of
Π∗. The key ingredient is a deterministic translation-invariant rule to
allocate sets of equal volume (forming a partition of R

d) to the points
of Π. The construction is based on the Gale-Shapley stable marriage
algorithm [2]. Next, let Γ be an ergodic random element of {0, 1}Z

d

,
and let Γ∗ be Γ conditioned on Γ(0) = 1. A shift coupling X of Γ and
Γ∗ is called an extra head scheme. We show that there exists an
extra head scheme which is a function of Γ if and only if the marginal
E[Γ0] is the reciprocal of an integer. When the law of Γ is product
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measure and d ≥ 3, we prove that there exists an extra head scheme
X satisfying E exp c‖X‖d < ∞; this answers a question of Holroyd
and Liggett [5].

1 Introduction

Let Π be a translation-invariant ergodic simple point process of unit intensity
on R

d, with law Λ. Let Π∗ be the Palm version of Π, with law Λ∗. (Recall
that if Π is a Poisson process, Π∗ is a Poisson process with an added point
at the origin). We call elements of R

d sites, and we call integer-valued Borel
measures on R

d configurations (so Π and Π∗ are random configurations).
For a configuration π and a site y we write T−yπ for the translated configu-
ration given by (T−y)π(·) = π(·+ y). A (continuum) extra head scheme
for Π is an R

d-valued random variable Y such that the point process T−Y Π
has law Λ∗. Thorisson [13] proved (in a more general setting) that for any
Π as above, there exists a continuum extra head scheme. We may regard
an extra head scheme as a shift-coupling; that is, a coupling (Π, Π∗, Y ) in
which Π, Π∗ have respective laws Λ, Λ∗, and Π∗ = T−Y Π almost surely. A
non-randomized extra head scheme is a shift coupling in which Y (and
therefore Π∗) is almost surely a function of Π. We shall prove the following.

Theorem 1 For any d ≥ 1 and any translation-invariant ergodic simple
point process Π in R

d, there exists a non-randomized extra head scheme.

Liggett [8] proved Theorem 1 in the case d = 1. In contrast, we have the
following.

Proposition 2 Let d ≥ 1 and let Π be any ergodic translation-invariant
simple point process on R

d. For any shift coupling of Π, Π∗ where Π = T Y Π∗,
the translation variable Y cannot be a function of Π∗.

Given that extra head schemes exist, it is natural to ask how to construct
an extra head scheme Y from the configuration Π. The existence proof in
[13] gives little clue how to do this; on the other hand in [8], an explicit
construction for a non-randomized extra head scheme is given for d = 1.
Our proof of Theorem 1 will be based on the following construction. The
support of Π is the random set [Π] = {x ∈ R

d : Π({x}) = 1}. A balanced
allocation rule for Π is a measurable function ΨΠ : R

d → [Π], defined
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Figure 1: A balanced allocation rule applied to a two-dimensional Poisson
process (here on a torus). The points of the process are the centers of the con-
centric circles. Each center is allocated exactly one unit of area, indicated by
concentric anulli in two colors. [If you are looking at a greyscale image, color
versions are available at http://www.math.ubc.ca/̃ holroyd/stable.html

and via arXiv:math.PR/0306402].

from Π in a deterministic, translation-invariant way, such that Ψ−1
Π (y) has

Lebesgue measure 1 for each y ∈ [Π]. (We shall give a more careful definition
later). From a balanced allocation rule Ψ, we shall obtain a non-randomized
extra head scheme by taking Y = ΨΠ(0). We shall construct a balanced
allocation rule using an approach based on the Gale-Shapley stable marriage
algorithm [2]. The resulting ΨΠ is illustrated in Figure 1. Its properties are
studied in detail in [4]. Related questions involving stable matchings of point
processes were studied in [6].

Consider now the following discrete setting. Let µ be a translation-
invariant ergodic measure on the product σ-algebra of {0, 1}Z

d

. We call
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elements of Z
d sites and elements of {0, 1}Z

d

configurations. Let Γ be
a random configuration with law µ. We say that a site x is occupied if
Γ(x) = 1, and unoccupied if Γ(x) = 0. Let p be the marginal probability
that the origin is occupied, and assume p ∈ (0, 1). Let µ∗ be the conditional
law of Γ given that the origin is occupied. For a site z and a configuration γ we
denote by T−zγ the translated configuration given by (T−zγ)(y) = γ(y + z).
A (discrete) extra head scheme for Γ is a Z

d-valued random variable X
such that the random configuration T−XΓ has law µ∗. An extra head scheme
is called non-randomized if it is almost surely equal to a deterministic
function of the configuration.

Theorem 3 Let d ≥ 1 and let µ be an ergodic translation-invariant measure
on {0, 1}Z

d

.

(i) For all d, µ there exists an extra head scheme.

(ii) For all d, there exists a non-randomized extra head scheme if and
only if the marginal probability p is the reciprocal of an integer.

(iii) For all d, µ and any shift coupling of Γ, Γ∗ where Γ = T XΓ∗, the
translation X cannot be a function of Γ∗.

Thorisson [13] proved Theorem 3 (i). The “if” part of (ii) follows from [8],
where appropriate non-randomized extra head schemes are constructed. We
shall present a construction which gives extra head schemes for all d, µ, and
also extends to arbitrary countable groups in place of Z

d. When p is rational
our construction will yield an extra head scheme which is a deterministic
function of Γ and an independent roll of a u-sided die, where u is the numer-
ator of p expressed in its lowest terms.

Consider now the special case when µ is product measure with parameter
p ∈ (0, 1). It is natural to ask how large the random variable ‖X‖ must be
when X is an extra head scheme (where ‖·‖ is the Euclidean norm, say). This
was essentially answered in dimensions d = 1, 2 by Liggett [8] and Holroyd
and Liggett [5].

Theorem 4 (Liggett d = 1; Holroyd & Liggett d ≥ 2) Let µ be product
measure with parameter p on Z

d.

(i) For all d there exists an extra head scheme X satisfying

P(‖X‖ > r) ≤ cr−d/2

where c = c(d, p) < ∞.
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(ii) For d = 1, 2, any extra head scheme satisfies

E‖X‖d/2 = ∞.

It was also shown in [5] that for all d ≥ 1, any extra head scheme must
involve the examination of sites at distance at least Z from O, where P(Z >
r) ≥ c′(d, p)r−d/2. In the light of the above results, one might guess that any
extra head scheme must satisfy E‖X‖d/2 = ∞ for d ≥ 3 also. In fact, this is
very far from the truth.

Theorem 5 Let µ be product measure with parameter p on Z
d. If d ≥ 3

then there exists an extra head scheme satisfying

E exp(C‖X‖d) < ∞

for some C = C(d, p) > 0.

(An analogous result also applies to continuum extra head schemes for the
Poisson process in d ≥ 3). The above result is the best possible up to the
value of C. Indeed, if X is an extra head scheme, then ‖X‖ must be at
least as large as the distance to the closest occupied site to the origin, so
P(‖X‖ > r) ≥ exp(−C ′rd) for some C ′ = C ′(d, p) > 0. The proof of
Theorem 5 relies on a result of Talagrand [11] on transportation cost.

Consider now the case when d = 1 and µ is an ergodic translation-
invariant measure on {0, 1}Z. The following natural measure-theoretic con-
struction of an extra head scheme is due to Thorisson [13],[12], and is also
presented in [8]. For two measures α, β on {0, 1}Z, define α ∧ β to be the
measure whose Radon-Nikodym derivative with respect to α + β is the min-
imum of the Radon-Nikodym derivatives of α and β with respect to α + β.
Define measures αn, βn, χn on {0, 1}Z for n ≥ 0 as follows:

α0 = µ; β0 = µ∗;

and for n ≥ 0:

χn = αn ∧ T nβn; αn+1 = αn − χn; βn+1 = βn − T−nχn.

Let Xmeas be such that

P(Xmeas = n, Γ ∈ A) = χn(A).
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Figure 2: An illustration of the construction of Xwalk. The walk
∑n

i=0(1 −
p−1Γ(i)) is plotted as a function of n. In this example p = 2/5, so the walk
takes an up-step of 1 for an unoccupied site and a down-step of 3/2 for an
occupied site. Conditional on this configuration, Xwalk takes the values 2, 9
each with probability 1/2.

It follows from results in [13],[12] that Xmeas < ∞ and Xmeas is an extra
head scheme. However, the above description gives little clue about how to
explicitly construct Xmeas from the configuration Γ.

In contrast, the extra head schemes described in [8] for Z involve an
explicit construction of X from Γ, and this construction enabled computation
of tail behavior. Liggett [8] commented that such solutions were “completely
different” from Xmeas above. In fact it turns out that they are identical when
p is the reciprocal of an integer. Moreover, we can give a simple explicit
construction of Xmeas for general p.

Let Γ have law µ, and let U be a Uniform(0, 1) random variable, inde-
pendent of Γ. Define Xwalk by

Xwalk = min

{

n ≥ 0 :
n

∑

i=0

(

1 − p−1Γ(i)
)

< U

}

.

(See Figure 2).
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Proposition 6 Xmeas and Xwalk are extra head schemes, and the joint laws
of (Xmeas, Γ) and (Xwalk, Γ) are identical.

It is easy to check that Xwalk is the same as the extra head scheme constructed
by Liggett [8] when p is the reciprocal of an integer.

Our main tool will be a bijective correspondence between extra head
schemes and balanced transport rules (to be defined later). In the special
case of non-randomized extra head schemes, the correspondence becomes
simpler, and can be expressed instead in terms of balanced allocation rules.
We describe this case below.

Let µ be a translation-invariant ergodic measure on {0, 1}Z
d

, and suppose
that the marginal probability p is the reciprocal of an integer. A (discrete)
balanced allocation rule for µ is a measurable map Φ which assigns to
µ-almost-every configuration γ and every site x a site Φγ(x), such that the
following properties hold. Firstly, we have |(Φγ)

−1(y)| = p−1γ(y) for µ-
almost-all γ and all y; that is, almost surely the range of ΦΓ is the set of
occupied sites, and each occupied site has exactly p−1 pre-images. Secondly,
Φ is translation-invariant in the sense that if Φγ(x) = y then ΦT zγ(T

zx) =
T zy.

Proposition 7 Let Γ have law µ, and suppose p is the reciprocal of an in-
teger. If Φ is a balanced allocation rule for µ then the random variable X
given by

X = ΦΓ(0) (1)

is a non-randomized extra head scheme for µ. Conversely, if X is a non-
randomized extra head scheme then there exists a µ-almost-everywhere unique
balanced allocation rule Φ satisfying (1).

Suppose that p = 1/2, and consider the natural special case of a non-
randomized extra head scheme X such that X = 0 whenever Γ(0) = 1.
We call such an X lazy. This corresponds via Proposition 7 to a balanced
allocation rule Φ in which for every occupied site x we have ΦΓ(x) = x
almost surely. Such a Φ amounts to an translation-invariant matching rule
of occupied sites to unoccupied sites, in which unoccupied site x is matched
to occupied site ΦΓ(x). Then X equals the origin if it is occupied, or the
partner of the origin otherwise.

We shall use Proposition 7 and its generalizations to deduce results about
extra head schemes from results about allocations. The reverse implication
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is also potentially useful. As an illustration, we note that the following are
consequences Theorem 4 (ii) combined with our results.

Corollary 8 Let µ be product measure on Z
d with parameter p the reciprocal

of an integer. If d = 1, 2 then any balanced allocation rule Φ for µ satisfies

E‖ΦΓ(0)‖d/2 = ∞.

We shall also state a continuum analogue of Corollary 8.

Corollary 9 Let Π, Π′ be two independent Poisson processes of unit inten-
sity in R

d, and consider any translation-invariant random perfect matching
between the points of Π and the points of Π′. If d = 1, 2 then the total distance
L from points in [0, 1)d to the points they are matched to satisfies

ELd/2 = ∞.

Consider the extra head scheme Xwalk in Proposition 6 when d = 1 and
p = 1/2. Note Xwalk is lazy, therefore it corresponds to a matching rule. It
is easy to see that the matching rule has the following simple description.
Wherever the sequence . . . , Γ(−1), Γ(0), Γ(1), . . . has an adjacent pair of the
form (Γ(i), Γ(i + 1)) = (0, 1), match them to each other. Then remove all
such pairs from the sequence and repeat indefinitely. This matching was used
earlier by Meshalkin [10] in the context of finitary isomorphisms.

When d = 1, one might guess that Xmeas is optimal in the sense that
any other non-negative extra head scheme stochastically dominates it; Srini-
vasa Varadhan asked whether this was the case (personal communication).
The answer is no. For a counterexample, let µ be product measure with
parameter 1/2. Wherever the configuration contains a sequence of the form
(Γ(i), . . . , Γ(i+3)) = (0, 0, 1, 1), the allocation rule (Meshalkin matching) cor-
responding to Xwalk = Xmeas above has ΦΓ(i) = i + 3 and ΦΓ(i + 1) = i + 2.
Consider modifying the matching rule so that instead ΦΓ(i) = i + 2 and
ΦΓ(i + 1) = i + 3 in this situation. By Proposition 7 this results in an ex-
tra head scheme X ′ satisfying P(X ′ ≤ 2) > P(Xmeas ≤ 2), so Xmeas was
not stochastically optimal. On the other hand, one may similarly show (by
induction) that no non-negative extra head scheme can be strictly stochas-
tically dominated by Xwalk. Hence there is no stochastically optimal extra
head scheme.

The article is organized as follows. In Sections 2,3 we establish corre-
spondences of extra head schemes with transports and allocations, and prove
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Proposition 7 and Corollaries 8, 9. In Sections 4,5 we construct allocations
and transports, and prove Theorem 1 and Theorem 3 (i),(ii). In Section 6
we prove Proposition 2 and Theorem 3 (iii) regarding shift coupling in the
reverse direction. In Section 7 we prove Proposition 6 about one-dimensional
constructions, and in Section 8 we prove the tail estimate Theorem 5.

2 Discrete Equivalence

In this section we state and prove an equivalence between discrete extra head
schemes and balanced transport rules, of which Proposition 7 is a special case.

Let G be an infinite countable group with identity i, and let µ be a
measure on the product σ-algebra of {0, 1}G. Elements of G are called sites
and elements of {0, 1}G are called configurations. A site g acts on other
sites x via left multiplication g : x 7→ gx, and hence on configurations via
(gγ)(x) = γ(g−1x), on measurable functions f : {0, 1}G → R via (gf)(γ) =
f(g−1γ), on events A ⊆ {0, 1}G via gA = {gγ : γ ∈ A} (whence 1[gA] =
g1[A] where 1[A] denotes the indicator of A), and on measures via (gµ)(f) =
µ(g−1f). We suppose that µ is invariant and ergodic under the action of G.
We write p for the marginal probability

p = µ(Γ(i) = 1).

We assume that 0 < p < 1, and we write µ∗ for the conditional law of Γ
given Γ(i) = 1:

µ∗(·) = µ(Γ ∈ · | Γ(i) = 1).

Let X be a discrete G-valued random variable on some joint probability
space with Γ, with probability measure P and expectation operator E. We
call X a (discrete) extra head scheme for µ if X−1Γ has law µ∗ under P.

A (discrete) transport rule for µ is a measurable function Θ which
assigns to µ-almost-every configuration γ and every pair of sites x, y a non-
negative real number Θγ(x, y), with properties (2),(3) as follows. We think
of Θγ(x, y) as the amount of mass transported from x to y when the config-
uration is γ, and we write

Θγ(A, B) =
∑

x∈A,y∈B

Θγ(x, y).

We require the following properties. Firstly,

ΘΓ(x, G) = 1, (2)
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for µ-almost-all Γ and all y (that is, each site sends out exactly one unit in
total). Secondly, Θ is G-invariant in the sense that

Θgγ(gx, gy) = Θγ(x, y) (3)

for all γ and all x, y, g ∈ G.
We call a transport rule Θ balanced if it satisfies in addition

ΘΓ(G, y) = p−1Γ(y), (4)

for µ-almost-all Γ and all x, y (that is, unoccupied sites receive nothing, all
occupied sites receive equal mass, which must then necessarily be p−1).

We are now ready to state the equivalence result. Fix µ, let Θ be a
transport rule, let X be a G-valued random variable, and suppose that

ΘΓ(i, x) = P(X = x | Γ) (5)

for µ-almost-all Γ and all x. (That is, conditional on the configuration, the
identity distributes one unit of mass according to the conditional distribution
of X). Note that by summing over x and using (3), (5) implies (2). For any
X, (5) determines Θ uniquely up to a P-null event, and conversely for any
Θ, (5) uniquely determines the joint law of X, Γ.

Theorem 10 Suppose that X and Θ are related by (5). Then X is an extra
head scheme if and only if Θ is balanced.

Proof of Proposition 7. This is an immediate special case of Theorem
10, where G is Z

d under addition, and we identify a balanced allocation rule
Φ with the balanced transport rule given by Θγ(x, y) = 1[Φγ(x) = y]. �

Proof of Corollary 8. Immediate from Proposition 7 and Theorem 4.
�

We shall make use of the following lemma.

Lemma 11 (Mass transport principle) Let m : G×G → [0,∞] be such
that m(gx, gy) = m(x, y) for all x, y, g.Then

∑

y∈G

m(x, y) =
∑

y∈G

m(y, x).
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For a proof see [1] or [3].
The proof of Theorem 10 is based the following lemma. Let J be the

total mass received by the identity:

J = J(Γ) = ΘΓ(G, i).

Lemma 12 Suppose X and Θ are related by (5). For any non-negative
measurable function f on {0, 1}G we have

E
(

f(X−1Γ)
)

= E
(

J(Γ)f(Γ)
)

.

(In the above, J(Γ)f(Γ) denotes ordinary multiplication).

Proof of Lemma 12. The following device will be useful. Enlarging
the probability space if necessary, we may assume that X is a deterministic
function of Γ and an independent Uniform(0, 1) random variable U , thus
X = ξ(Γ, U). (U represents any “additional randomization” in the choice of
X; see [5] for a more detailed explanation).

We have the chain of equalities

E
(

f(X−1Γ)
)

=

∫

dµ(γ)

∫ 1

0

duf
(

ξ(γ, u)−1γ
)

=

∫

dµ(γ)

∫ 1

0

du
∑

x∈G

1[ξ(γ, u) = x]f(x−1γ)

=

∫

dµ(γ)
∑

x∈G

Θγ(i, x)f(x−1γ) (6)

=

∫

dµ(γ)Θγ(G, i)f(γ) (7)

= E
(

J(Γ)f(Γ)
)

.

In (6) we have used (5), and in (7) we have used Lemma 11 with m(x, y) =
EΘΓ(x, y)f(y−1Γ). �

Proof of Theorem 10. Suppose that Θ is a balanced transport rule.
For any non-negative measurable f , by Lemma 12 and (4) we have

E
(

f(X−1Γ)
)

= E
(

J(Γ)f(Γ)
)

= p−1E
(

Γ(i)f(Γ)
)

= E
(

f(Γ) | Γ(r) = 1
)

= µ∗(f).
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So X−1Γ has law µ∗, thus X is an extra head scheme.
Conversely, suppose that X is an extra head scheme. We must check

that Θ is balanced. Since (X−1Γ)(i) = 1 almost surely, it is immediate from
(5),(3) that every unoccupied site receives zero mass, so it is sufficient to
check that every occupied site receives mass p−1 almost surely. By (3) it is
enough to check this for i, so we must check that under µ∗ we have J = p−1

almost surely.
Since X is an extra head scheme, for any f we have E(f(X−1Γ)) = µ∗(f).

Note also that E(Jf) = pE(Jf | Γ(i) = 1) + (1 − p)E(Jf | Γ(i) = 0) =
pµ∗(Jf) (since J = 0 on {Γ(i) = 0}). Thus Lemma 12 yields

µ∗(f) = pµ∗(Jf).

Applying this first with f ≡ 1 and then f = J shows that under µ∗, the
random variable J has mean p−1 and variance 0, hence µ∗-almost-surely we
have J = p−1 . �

3 Continuum Equivalence

The equivalence between extra head schemes and balanced transport rules in
Theorem 10 has an analogue in the continuum setting, which we shall state
(without proof) at the end of this section. Since the full continuum result is
somewhat technical and is not required for any of our main results, we shall
instead prove the special case involving non-randomized extra head schemes
and allocations (the analogue of Theorem 7).

Let Π be a translation-invariant ergodic simple point process of intensity
1 on R

d, with law Λ. Elements of R
d are called sites. Integer-valued Borel

measures on R
d are called configurations. Let L denote Lebesgue measure

on R
d. For any z ∈ R

d, we define the translation T z, which acts on sites
via T zx = x + z, on functions h : R

d → R via (T zh)x = h(T−zx), and on
configurations via (T zπ)(h) = π(T−zh).

Let Π∗ be the Palm version of Π, with law Λ∗. The following is a standard
property of the Palm process. For any bounded measurable function f on
configurations and any Borel set B ⊆ R

d, we have

E

∫

B

f(T−sΠ)Π(ds) = L(B)Ef(Π∗). (8)
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Note that the integral on the left can be written as
∑

s∈[Π]∩B f(T−sΠ). See

for example [7] for details.
A (continuum) allocation rule for Π is a measurable function Ψ

which assigns to Λ-almost-every configuration π and every site x a site
Ψπ(x), and which is translation-invariant in the sense that if Ψπ(x) = y
then ΨT zπ(T zx) = T zy. (It is important that we require the preceding state-
ment to hold for all configurations π - in particular it is thus understood that
ΨT zπ is defined if and only if Ψπ is). Let L denote Lebesgue measure on R

d.
An allocation rule Ψ is called balanced if Λ-almost-surely for each s ∈ [Π]
we have L(Ψ−1

Π (s)) = 1, while L(Ψ−1
Π (Rd \ [Π])) = 0.

Theorem 13 Let Ψ be an allocation rule for Π. The random variable Y =
ΨΠ(0) is a non-randomized extra head scheme for Π if and only if Ψ is
balanced.

We shall prove Theorem 13 via Lemma 14 below. Let Ψ be an allocation
rule. For z ∈ Z

d, define the unit cube Qz = z + [0, 1)d ⊆ R
d. For s ∈ R

d,
write JΠ(s) = L(Ψ−1

Π (s)) and Πs = T−ΨΠ(s)Π.

Lemma 14 For any z ∈ Z
d and any non-negative measurable f we have

Ef(Π0) = E

∫

Qz

JΠ(s)f(T−sΠ)Π(ds).

Proof. The translation-invariance of Λ and Ψ implies that Πx has the same
law for each x ∈ R

d. Indeed, write Π′ for T−xΠ. Then ΨΠ(x) = x + ΨΠ′(0)
so that T−ΨΠ(x)Π = T−Ψ

Π′(0)(Π′) = Π′

0, which has the law of Π0. Therefore,
Ef(Π0) = Ef(Πx) for any f . Fix f and x, and define

m(z, w) = E

∫

Qz

f(Πx)1[ΨΠ(x) ∈ Qw]L(dx).

Applying the mass transport principle (Lemma 11) yields

∑

w∈Zd

m(z, w) =
∑

w∈Zd

m(w, z).

The left side equals Ef(Π0), and the right side equals

E

∫

Rd

f(T−ΨΠ(x)Π)1[ΨΠ(x) ∈ Qz]L(dx) = E

∫

Qz

JΠ(s)f(T−sΠ)Π(ds).
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�

Proof of Theorem 13. If Ψ is balanced then Lemma 14 immediately
gives that ΨΠ(0) is an extra head scheme. For the converse, apply the lemma
to f ≡ 1 and f(π) = Jπ(0). �

The following is the continuum analogue of Corollary 8.

Corollary 15 Let Π be a Poisson process of unit intensity on R
d. If d = 1, 2

then any balanced allocation rule Ψ for Π satisfies

E‖ΨΠ(0)‖d/2 = ∞.

Proof. One possible proof is to deduce the result from Theorem 13 to-
gether with Theorem 2(B) of [5], which is the continuum analogue of Theorem
4 (ii). Alternatively we may proceed via discrete transports as follows.

Denote the unit cube Qz = z + [0, 1)d. Let Ψ be a balanced allocation
rule for Π, and define a discrete configuration Γ by

Γ(z) = 1 ∧ Π(Qz),

so that the law of Γ is product measure with parameter e−1 on Z
d. Now

define Θ by

ΘΓ(x, y) = E
(

L[Ψ−1
Π (Qy) ∩ Qx] | Γ

)

.

It is elementary to check that Θ is a balanced transport rule for Γ, so by
Theorem 10 there is an associated extra head scheme X. It is furthermore
easy to check that E‖ΨΠ(0)‖d/2 < ∞ implies E‖X‖d/2 < ∞, so the result
follows from Theorem 4 (ii). �

Proof of Corollary 9. The required statement may be formulated as
follows. Let M be a simple point process on R

d × R
d, invariant under the

diagonal action of translations of R
d. We write M(A, B) = M(A × B), and

suppose that the marginals given by Π(·) = M(Rd, ·) and Π′(·) = M(·, Rd)
are two independent Poisson processes of unit intensity on R

d. (If M has an
atom at (x, y), it means that the point x of Π′ is matched to the point y of
Π). It is sufficient to prove that for d = 1, 2, any such M must satisfy

∫∫

‖x − y‖d/21[x ∈ Q0]M(dx, dy) = ∞. (9)
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As in the preceding proof we define

Γ(z) = 1 ∧ Π(Qz),

and
ΘΓ(x, y) = E

(

M(Qx, Qy) | Γ
)

.

It is easy to check that the law of Γ is product measure on Z
d, and that Θ is a

balanced transport for Γ. Equation (9) may then be deduced from Theorem
10 and Theorem 4 (ii). �

Finally in this section we shall state without proof the full continuum ana-
logue of Theorem 10. A transport is a non-negative σ-finite Borel measure
ω on R

d × R
d. We write ω(A, B) = ω(A× B), and think of this as the mass

sent from A to B. The marginals of ω are the measures ω(·, Rd), ω(Rd, ·) on
R

d. Let Π be a translation-invariant, ergodic simple point process on R
d with

law Λ. A (continuum) transport rule for Π is a measurable map Ω which
assigns to Λ-almost-every configuration π a transport Ωπ, with the follow-
ing properties. The first marginal ΩΠ(·, Rd) is Lebesgue measure Λ-almost-
surely, and Ω is invariant in the sense that ΩT zπ(T zA, T zB) = Ωπ(A, B) for
all π, z, A, B. A transport rule Ω is balanced if the second marginal satisfies
Λ-almost-surely ΩΠ(Rd, A) = Π(A) for all A ⊆ R

d.
Let Y be an R

d-valued random variable and let Ω be a transport rule,
and suppose P admits conditional probabilities such that

d[ΩΠ(·, A)]

dL(·)
(0) = P(Y ∈ A | Π). (10)

Here a specific version of the Radon-Nikodym derivative must be used, to en-
sure that it is defined everywhere and translation invariant. By the Lebesgue
differentiation theorem (see [9], Theorem 2.1.2) the upper density lim supr→0

ν(B(x, r))/L(B(x, r)) is a suitable version of the Radon-Nikodym derivative
dν/dL.

Theorem 16 Suppose Y and Ω are related as in (10). Then Y is an extra
head scheme if and only if Ω is balanced.

We omit the proof of Theorem 16, which proceeds along the same lines as
that of Theorem 10. The proof involves no new ideas, but more technical
notation.
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4 Discrete allocations and transports

Let µ be an ergodic G-invariant measure on {0, 1}G. In this section we shall
prove the following.

Theorem 17 For any G, µ there exists a balanced transport rule.

Theorem 18 For any G, there exists an integer-valued balanced transport
rule if and only if p is the reciprocal of an integer.

Theorem 19 For any G, µ, there exists an extra head scheme.

Theorem 20 For any G, there exists a non-randomized extra head scheme
if and only if p is the reciprocal of an integer.

Proof of Theorem 18, “only if” part. In an integer-valued transport
rule, the unit of mass sent out by a site all goes to a single site, while in a
balanced transport rule, occupied sites receive mass p−1. Hence p−1 must be
an integer. �

Proof of Theorem 3 (i),(ii), Theorems 19,20. Theorems 19,20
follow immediately from Theorems 17,18 together with Theorem 10. (A
non-randomized extra head scheme corresponds via (5) to an integer-valued
balanced transport rule). Theorem 3 parts (i),(ii) are Theorems 19,20 spe-
cialized to Z

d. �

Proof of Theorem 17. We construct the required transport rule by
a kind of invariant greedy algorithm. Order the elements of G as G =
{g0, g1, . . .}, and fix a configuration γ. Informally, each site starts with mass
1 to distribute, while a site y has the capacity to receive mass p−1γ(y). At
time n, every site x sends as much mass as possible to site gnx. Formally,
inductively define θn(x, y) = θn

γ (x, y) for n = 0, 1, . . . as follows. For all sites
x, y,

θ0(x, y) = 0,

and for n ≥ 0,
θn+1(x, y) = θn(x, y) + δn(x, y),
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where

δn(x, y) = 1[gnx = y] min
{

1 − θn(x, G), p−1γ(y) − θn(G, y)
}

.

Finally put Θγ(x, y) = limn→∞ θn
γ (x, y).

Clearly Θ is G-invariant; we claim that it is a balanced transport rule.
By the construction, we have for all x

ΘΓ(x, G) ≤ 1 and ΘΓ(G, x) ≤ p−1Γ(x).

We call a site x unexhausted if the former inequality is strict, and we
call x unsated if the latter inequality is strict. We must show that almost
surely there are no unexhausted sites and no unsated sites. Firstly note that
unexhausted sites and unsated sites cannot exist simultaneously for the same
γ. For suppose that if x is unexhausted and y is unsated. Then considering
δn(x, y) where n is such that gnx = y shows that either θn+1(x, y) = 1 or
θn+1(x, y) = p−1γ(y), a contradiction. Also, by ergodicity, the existence
of unexhausted sites and the existence of unsated sites are both zero-one
events. Hence it remains only to rule out the possibility that almost surely
one occurs without the other. The mass transport principle (Lemma 11)
applied to m(x, y) = EΘΓ(x, y) yields

EΘΓ(0, G) = EΘΓ(G, 0),

but the left side is less than 1 if and only if there exist unexhausted sites,
and the right side is less than 1 if and only if there exist unsated sites. �

Remark: In the case when G = Z under addition, the above construction
also gives a balanced transport rule if we set gn = n for all n ≥ 0, even
though g0, g1, . . . no longer exhausts G. (This will be relevant in the proof of
Proposition 6). The above proof goes through, except for the argument that
unexhausted sites and unsated sites cannot exist simultaneously, which must
be modified as follows. By the previous argument, for x ≤ y it is impossible
that x is unexhausted and y is unsated. Hence if with positive probabil-
ity both unexhausted and unsated sites existed, then by the invariance of
the construction, the random variable max{x : x is unsated} would take all
integer values with equal positive probabilities, which is impossible.

Proof of Theorem 18, “if” part. Consider the construction of Θ in
the proof of Theorem 17 above. If p−1 is an integer then each θn is integer-
valued, so the same applies to Θ. �
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If p = u/v where u, v are integers, the same argument shows that u−1Θ is
integer-valued, and the corresponding extra head scheme can consequently be
written as a deterministic function of Γ and an independent roll of a u-sided
die, as remarked in the introduction.

Note also that if the ordering of G satisfies g0 = i, then the resulting
extra head scheme is lazy.

5 Continuum allocations

Let Π be a translation-invariant ergodic simple point process of unit intensity
on R

d. Denote the law of Π by Λ.

Theorem 21 For any d, Λ there exists a balanced continuum allocation rule.

Proof of Theorem 1. Immediate from Theorems 21 and 13. �

It is natural to try to prove Theorem 21 by some continuous-time ver-
sion of the invariant greedy algorithm, in which sites of R

d are ordered by
Euclidean norm, say. Although this is an appealing idea, it appears difficult
to rigorize directly. Instead, our construction will be based on the stable
marriage algorithm of Gale and Shapley, [2].

Proof of Theorem 21. In what follows, all distances are Euclidean.
Elements of [Π] are called Π-points. Let L be the (random) set of all sites of
R

d which are equidistant from two or more Π-points. Since Π has intensity 1,
[Π] is countable almost surely, hence L(L) = 0 almost surely. For convenience
we set ΨΠ(s) = s for all s ∈ L.

Consider the following algorithm. For each positive integer n, stage n

consists of two parts as follows.

(i) Each site s /∈ L applies to the closest Π-point to s which has not
rejected s at any earlier stage.

(ii) For each Π-point x, let An(x) be the set of sites which applied to x in
stage n (i), and define the rejection radius

rn(x) = inf
{

r : L
(

An(x) ∩ B(x, r)
)

≥ 1
}

,
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where B(x, r) = {s ∈ R
d : ‖s−x‖ < r} is the ball of radius r at x, and

the infimum of the empty set is taken to be ∞. Then x shortlists all
sites in An(x)∩B(x, rn(x)), and rejects all sites in An(x)\B(x, rn(x)).

We now describe Ψ. Consider a site s 6∈ L. Since any bounded set contains
only finitely many Π-points almost surely, the following is clear. Either s
is rejected by every Π-point (in increasing order of distance from s), or, for
some Π-point x and some stage n, s is shortlisted by x at stage n and all
later stages. In the former case we call s unclaimed and put for convenience
ΨΠ(s) = s; in the latter case we put ΨΠ(s) = x.

We claim that Ψ is a balanced allocation rule. Clearly it satisfies the
required measurability and translation-invariance.

Let Sn(x) be the set of sites shortlisted by a Π-point x at stage n. By the
construction in (ii) and the intermediate value theorem we have L(Sn(x)) ≤
1. But by the definition of Ψ above we have Ψ−1

Π (x) = lim supn→∞
Sn(x) =

lim infn→∞ Sn(x), so Fatou’s lemma implies L(Ψ−1
Π (x)) ≤ 1. We call a Π-

point x unsated if that inequality is strict. Note also that if a Π-point x
ever rejects any sites (at stage n say), then we must have L(Sm(x)) = 1 for
all later stages m ≥ n. Hence an unsated Π-point never rejected any sites.

We must show that almost surely there are no unsated Π-points and
the set of unclaimed sites is L-null. Unsated Π-points and unclaimed sites
cannot exist simultaneously, since an unclaimed site is rejected by every
Π-point, but an unsated Π-point never rejects sites. Also, by ergodicity,
the existence of unsated Π-points and of a positive measure of unclaimed
sites are both zero-one events, so it remains to rule out the possibility that
almost surely one occurs without the other. For z ∈ Z

d define the unit cube
Qz = z + [0, 1)d ⊆ R

d. Let

m(s, t) = E
∑

x∈[Π]∩Qt

L(Qs ∩ Ψ−1
Π (x)).

By the mass transport principle (Lemma 11) we have

E
∑

x∈[Π]∩Q0

L(Ψ−1
Π (x)) =

∑

s∈Zd

m(s, 0) =
∑

t∈Zd

m(0, t) = EL(Q0 ∩ Ψ−1
Π ([Π])).

Since Π has intensity 1, the left side equals 1 if there are no unsated centers,
and is strictly less than 1 otherwise. And the right side equals 1 if the set of
unclaimed sites is L-null, and is strictly less than 1 otherwise. �
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6 Reverse extra head schemes

Proposition 22 Let µ be a G-invariant ergodic measure on {0, 1}G, and let
Γ have law µ. For any discrete extra head scheme X we have almost surely

P(X = x | X−1Γ) ≤ p

for all x ∈ G.

Proposition 23 Let Π be a translation-invariant ergodic point process of
unit intensity on R

d. For any continuum extra head scheme Y , the condi-
tional law of Y given T−Y Π is absolutely continuous with respect to Lebesgue
measure, with density bounded above by 1.

Proof of Theorem 3 (iii), Proposition 2. Immediate from Proposi-
tions 22,23. �

Proof of Proposition 22. Let X be an extra head scheme for Γ, and
write Γ∗ = X−1Γ. Fix β > p, and define for x ∈ G

Ax =
{

γ∗ ∈ {0, 1}G : P(X = x | Γ∗)(γ∗) ≥ β
}

.

Since {Γ∗ ∈ Ax, X = x} ⊆ {Γ ∈ xAx}, we have

βµ∗(Ax) ≤ P(Γ∗ ∈ Ax, X = x) ≤ µ(xAx) = pµ∗(Ax).

Therefore µ∗(Ax) = 0. Taking a union over rational β > p completes the
proof. �

Proof of Proposition 23. Let Y be an extra head scheme for Π, and
write Π∗ = T−Y Π. It is sufficient to show that for every rational cube W of
positive Lebesgue measure, almost surely

P(Y ∈ W | Π∗) ≤ L(W ).

Fix β > 1, and define the event

AW =
{

π∗ : P(Y ∈ W | Π∗)(π∗) ≥ βL(W )
}

.
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We have

βL(W )Λ∗(AW ) ≤ P(Π∗ ∈ AW , Y ∈ W )

≤

∫

Λ(dΠ)Λ
(

⋃

y∈[Π]∩W

T yAW

)

≤

∫

Λ(dΠ)
∑

y∈[Π]∩W

Λ(T yAW )

= L(W )Λ∗(AW ).

Hence when L(W ) > 0 we have Λ∗(AW ) = 0. �

7 Measure-theoretic construction

The following is a variant of the construction of Xmeas in the introduction.
Let µ be a G-invariant ergodic measure on {0, 1}G. Let G be ordered as
G = {g0, g1, . . .}. Define measures αn, βn, χn on {0, 1}G as follows:

α0 = µ; β0 = µ∗;

and for n ≥ 0:

χn = αn ∧ (gnβn); αn+1 = αn − χn; βn+1 = βn − g−1
n χn.

Let ΘΓ be the balanced transport rule constructed in the proof of Theorem
17, using the same ordering of G as above. Let Xgreedy be the corresponding
extra head scheme given by (5) and Theorem 10.

Theorem 24 For any G, µ and any ordering g0, g1, . . . we have

P(Xgreedy = gn, Γ ∈ ·) = χn(·)

for all n.

Proof. By construction, the measures αn, βn, χn are all absolutely contin-
uous with respect to µ. Denote the Radon-Nikodym derivatives

an =
dαn

dµ
, bn =

dβn

dµ
, cn =

dχn

dµ
.
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We have
α0 = 1; β0(γ) = p−1γ(0).

And using G-invariance of µ,

cn = an ∧ (gnbn); an+1 = an − cn; bn+1 = bn − g−1
n cn.

By induction on n, it is easy to verify that

an(γ) = 1 − θn
γ (0, G);

bn(γ) = p−1γ(0) − θn
γ (G, 0);

cn(γ) = δn
γ (0, gn) = Θγ(0, gn),

where θn(x, y), δn(x, y) are as in the proof of Theorem 17. It follows that for
any event A ⊆ {0, 1}G,

P(Xgreedy = gn, Γ ∈ A) =

∫

A

µ(dγ)Θγ(0, gn) =

∫

A

µ(dγ)cn(γ) = χn(γ),

as required. �

Proof of Proposition 6. Let gn = n for n = 0, 1, . . . (note that
g0, g1, . . . does not exhaust G) and construct Θ, Xgreedy and χn as above. As
remarked after the proof of Theorem 17, Θ is a balanced transport rule in this
case also, and therefore Xgreedy is an extra head scheme. The statement of
Proposition 24 above also holds, with the same proof. Therefore (Xgreedy, Γ)
and (Xmeas, Γ) have identical joint laws. It remains to check that (Xgreedy, Γ)
and (Xwalk, Γ) have identical laws. This follows from the fact that for any
x ≤ y,

Θγ(x, y) =

∫ 1

0

du 1
[

y = min
{

z ≥ x :

z
∑

i=x

(

1 − p−1γ(i)
)

< u
}]

.

This is evident from Figure 2. More formally, it is may be checked by induc-
tion on y − x. �

8 Three dimensional tail behavior

In this section we prove Theorem 5.
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Theorem 25 Let µ be product measure with parameter p on Z
d. If d ≥ 3

then there exists a balanced discrete transport rule Φ satisfying

E exp(C‖ΦΓ(0)‖d) < ∞

for some C = C(d, p) > 0.

Proof of Theorem 5. Immediate from Theorem 25 and Theorem 10. �

Proof of Theorem 25. It is convenient to work first in a continuum
setting, and then transfer to Z

d. A transport is a non-negative σ-finite
measure ω on R

d × R
d. For Borel sets A, B ⊆ R

d we write ω(A, B) =
ω(A×B), and we think of this as the amount of mass transported from A to
B. By a random transport we mean a random element in the space of all
transports, this space being equipped with the natural product σ-algebra. A
random transport T is called invariant if T (A + z, B + z) is equal in law
to T (A, B) for any Borel sets A, B and any site z. We shall construct an
invariant random transport T whose marginals are Lebesgue measure on R

d

and a Poisson process.
The following is proved in [11]. Let d ≥ 3. For each positive integer m

there exists a random transport S = Sm with the following properties. The
first marginal S(·, Rd) is Lebesgue measure on the cube [0, 1]d almost surely.
The second marginal S(Rd, ·) is equal in law to m−1

∑m
i=1 δi where the δi

are point masses whose locations are i.i.d. uniform on [0, 1]d. Finally, for
constants c, c′ < ∞ depending only on d, we have the following “bound on
transportation cost”:

E

∫∫

exp(cm‖x − y‖d)S(dx, dy) ≤ c′.

Here ‖ · ‖ is the Euclidean norm and E denotes expectation with respect to
the random transport.

We now define a random transport Tm as follows. Informally, we re-scale
Sm to cover a cube of volume m, and multiply by m so that the intensity
is still 1; then we tile space with identical copies of this transport, with the
origin chosen uniformly at random. Formally, let a be uniform on [0, 1]d and
independent of Sm, and define Tm by

Tm(A, B) = m
∑

z∈Zd

Sm

(

m−1/d(A + a + z), m−1/d(B + a + z)
)

.
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It is easy to check the following. Tm is invariant. Tm(·, Rd) is almost
surely Lebesgue measure on R

d. As m → ∞, Tm(Rd, ·) converges weak* to a
Poisson point process of intensity 1 on R

d. Finally, for any Borel set A ⊆ R
d

with Lebesgue measure L(A) ∈ (0,∞) we have

E

∫∫

exp(c‖x − y‖d)Tm(dx, dy)1[x ∈ A] ≤ c′L(A). (11)

(To check (11) we first use invariance to deduce that the left side must be a
linear multiple of L(A), and then take A to be a cube of volume m to find
the constant).

By (11), the sequence (Tm) is tight, so let T be a weak* limit point, and
note the following properties of T . It is invariant, since invariant random
transports form a weak* closed set. Clearly T (·, Rd) is Lebesgue measure on
R

d almost surely. Writing Π(·) = T (Rd, ·), we see that Π is a Poisson point
process of intensity 1 on R

d. And finally (11) holds with T in place of Tm,
since the set of random transports for which (11) holds is weak* closed.

Choose ` such that 1 − p = e−`d

, and for z ∈ Z
d define the unit cube

Qz = [0, 1)d + z. Define a discrete configuration Γ by

Γ(z) = 1 ∧ Π(`Qz).

The choice of ` ensures that the law of Γ is product measure with parameter
p on {0, 1}Z

d

. Now define Θ by

ΘΓ(x, y) = E
(

T (`Qx, `Qy) | Γ
)

.

It is elementary to check that Θ is a balanced transport rule for Γ, and (11)
implies that it satisfies the required bound. �

The following continuum analogue of Theorem 5 may be proved by ap-
plying Theorem 16 to the continuum transport given by

ΘΠ(A, B) = E
(

T (A, B) | Π
)

where T , Π are as in the above proof. Alternatively it may be deduced from
Theorem 5 by techniques similar to those used in [5] Section 4.

Theorem 26 Let Π be a Poisson process of unit intensity on R
d. If d ≥ 3

then there exists a continuum extra head scheme for Π satisfying

E exp(C‖Y ‖d) < ∞

for some C = C(d) > 0.

24



Open problems

(i) In the case of product measure on Z
d or a Poisson process on R

d,
what is the optimal tail behavior for non-randomized extra schemes (or
equivalently, for balanced allocation rules)?

(ii) What is the tail behavior of the extra head schemes (or allocation rules)
constructed in Sections 4,5?

(iii) What is the optimal tail behavior of extra head schemes for product
measure on other groups (for example for a free group with distance
measured according to a Cayley graph)?
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[3] O. Häggström. Infinite clusters in dependent automorphism invariant
percolation on trees. Ann. Probab., 25(3):1423–1436, 1997.

[4] C. Hoffman, A. E. Holroyd, and Y. Peres. A stable marriage of Poisson
and Lebesgue. In preparation.

[5] A. E. Holroyd and T. M. Liggett. How to find an extra head: optimal
random shifts of Bernoulli and Poisson random fields. Ann. Probab.,
29(4):1405–1425, 2001.

[6] A. E. Holroyd and Y. Peres. Trees and matchings from point processes.
Electron. Comm. Probab., 8:17–27 (electronic), 2003.

25



[7] O. Kallenberg. Foundations of modern probability. Probability and its
Applications (New York). Springer-Verlag, New York, second edition,
2002.

[8] T. M. Liggett. Tagged particle distributions or how to choose a head at
random. In In and out of equilibrium (Mambucaba, 2000), volume 51 of
Progr. Probab., pages 133–162. Birkhäuser Boston, Boston, MA, 2002.
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