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Abstract. Let each site of the square lattice Z2 be independently declared
closed with probability p, and otherwise open. Consider the following game: a
token starts at the origin, and the two players take turns to move it from its
current site x to an open site in {x + (0, 1), x + (1, 0)}; if both these sites are
closed, then the player to move loses the game. Is there positive probability
that the game is drawn with best play – i.e. that neither player can force a
win? This is equivalent to the question of ergodicity of a certain elementary
one-dimensional probabilistic cellular automaton (PCA), which has been studied
in the contexts of enumeration of directed animals, the golden-mean subshift,
and the hard-core model. Ergodicity of the PCA has been noted as an open
problem by several authors. We prove that the PCA is ergodic for all 0 < p < 1,
and correspondingly that the game on Z2 has no draws. We establish similar
results for a certain misère variant of the game and a PCA associated to it.

On the other hand, we prove that the analogous game does exhibit draws for
sufficiently small p on various directed graphs in higher dimensions, including
an oriented version of the even sublattice of Zd in all d ≥ 3. This is proved via a
dimension reduction to a hard-core lattice gas in dimension d− 1. We show that
draws occur whenever the corresponding hard-core model has multiple Gibbs
distributions. We conjecture that draws occur also on the standard oriented
lattice Zd for d ≥ 3, but here our method encounters a fundamental obstacle.

1. Introduction

We introduce and study percolation games on various graphs. For the lattice
Z2, we show that the probability of a draw is 0; this is equivalent to showing the
ergodicity of a certain probabilistic cellular automaton. In higher dimensions,
we prove that draws can occur, by developing a connection to the question of
multiplicity of Gibbs distributions for the hard-core model.
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Figure 1. Outcomes of the percolation game on the finite region
{x ∈ Z2

+ : x1 + x2 ≤ 200}, declaring a draw if the token reaches the
diagonal x1 + x2 = 200, and with p = 0.1 (left) and p = 0.2 (right).
Colours indicate the outcome when the game is started from that
site: first player win (blue); first player loss (green); draw (red).
Closed sites are black.

1.1. Two dimensional games and ergodicity. Let each site of Z2 be closed
with probability p and open with probability 1 − p, independently for different
sites. Consider the following two-player game. A token starts at the origin. The
players move alternately; if the token is currently at x, a move consists of moving
it to x+ (0, 1) or to x+ (1, 0). The token is only allowed to move to an open site.
In accordance with the “normal play rule” of combinatorial game theory, if both
the sites x+ (0, 1) and x+ (1, 0) are closed, then the player whose turn it is to
move loses the game. The entire configuration of open and closed sites is known
to both players at all times. We call this the percolation game on Z2.

If p ≥ 1 − pc, where pc is the critical probability for directed site percolation,
then, with probability 1, only finitely many sites can be reached from the origin
along directed paths of open sites, and so the game must end in finite time. In
particular, one or other player must have a winning strategy. (A strategy for one
or other player is a map that assigns a legal move, where one exists, to each vertex;
a winning strategy is one that results in a win for that player, whatever strategy
the other player uses.) Suppose on the other hand that p < 1− pc; is there now a
positive probability that neither player has a winning strategy? In that case we
say that the game is a draw, with the interpretation that it continues for ever
with best play. (When p = 0 the game is clearly always a draw).
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Figure 2. The probabilistic cellular automaton (PCA) Ap.

See Figure 1 for simulations on a finite triangular region, with draws imposed as a
boundary condition. As the size of this region tends to ∞, the probability of a
draw starting from the origin converges to the probability of a draw on Z2; the
question is whether this limiting probability is positive for any p.

Related questions are considered in [HM] and [BHMW15], in which the underlying
graph is respectively a Galton-Watson tree, and a random subset of the lattice
with undirected moves.

In our case of a random subset of Z2 with directed moves, the outcome (win,
loss, draw) of the game started from each site can be interpreted in terms of
the evolution of a certain one-dimensional discrete-time probabilistic cellular
automaton (PCA); the state of the PCA at a given time relates to the outcomes
associated to the sites on a given Northwest-Southeast diagonal of Z2.

The PCA has alphabet {0, 1} and universe Z, so that a configuration at a given
time is an element of {0, 1}Z. (The three game outcomes will correspond to the
two states of the PCA via a coupling of two copies of the PCA). The evolution of
the PCA is as follows. Given a configuration ηt at some time t, the configuration
ηt+1 at time t + 1 is obtained by updating each site n ∈ Z simultaneously and
independently, according to the following rule.

• If ηt(n− 1) = ηt(n) = 0, then ηt+1(n) is set to 0 with probability p and 1
with probability 1− p.
• Otherwise (i.e. if at least one of ηt(n− 1) and ηt(n) is 1), ηt+1(n) is set to

0 with probability 1.

We denote this PCA Ap, and call it the hard-core PCA. Its evolution rule at
each site is illustrated in Figure 2. (The time coordinate t increases from top to
bottom, and the spatial coordinate n increases from left to right).

The hard-core PCA Ap has already been studied from a number of different
perspectives. It is closely related to the enumeration of directed lattice animals,
which are classical objects in combinatorics. The link was originally made by Dhar
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[Dha83], and subsequent work includes [BM98, LBM07] – see also Section 4.2 of
the survey of Mairesse and Marcovici [MM14a] for a short introduction. It also has
strong connections to the hard-core lattice gas model in statistical physics (which
also has applications for example to the modeling of communications networks) –
see Section 3 of this paper. The case p = 1/2 in particular relates to the measure
of maximal entropy of the golden mean subshift in dynamical systems – see [Elo96]
and also [Mar13, Chapter 8].

Formally, we take Ap to be the operator on the set of distributions on {0, 1}Z
representing the action of the PCA; if µ is the distribution of a configuration in
{0, 1}Z, then Apµ is the distribution of the configuration obtained by performing
one update step of the PCA. A stationary distribution of a PCA F is a
distribution µ such that Fµ = µ. (More generally, µ is k-periodic if F kµ = µ,
and periodic if it is k-periodic for some k ≥ 1.) A PCA is said to be ergodic if it
has a unique stationary distribution and if from any initial distribution, the iterates
of the PCA converge to that stationary distribution (in the sense of convergence
in distribution with respect to the product topology).

It is straightforward to show that if p is sufficiently large, then the hard-core
PCA Ap is ergodic. The question of whether Ap is ergodic for all p ∈ (0, 1) has
been mentioned as an open problem by several authors, for example in [TVS+90],
[LBM07], [MM14a]. A link between the hard-core PCA Ap and the percolation
game was already mentioned by [LBM07], and it is relatively easy to show that the
percolation game has positive probability of a draw if and only if Ap is non-ergodic.

We also consider a certain “misère” variant of the game which we call the target
game. In the percolation game described above, moves to closed sites were
forbidden; this is of course equivalent to allowing all moves, but with the proviso
that a player who moves to a closed site loses the game. In the target game, the
game is instead won by the first player who moves to a closed site. In the same
way that the percolation game corresponds to the hard-core PCA Ap, we show
that the target game corresponds to another PCA, which we denote by Bp, whose
update rule is shown in Figure 3.

PCA that are defined on Z and whose alphabet and neighbourhood are both of size
2 are sometimes called elementary PCA. A variety of tools have been developed to
study their ergodicity. Under the additional assumption of left-right symmetry of
the update rule, these PCA are defined by only three parameters: the probabilities
to update a cell to state 1 if its neighbourhood is in state 00, 11, or 01 (which
is the same as for 10). Existing methods can be used to handle more than 90%
of the volume of the cube [0, 1]3 defined by this parameter space, but when p is
small, the PCA Ap and Bp belong to an open domain of the cube where none of
the previously known criteria hold [TVS+90, Chapter 7].
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Figure 3. The PCA Bp.

We now state our first main result.

Theorem 1. For any p ∈ (0, 1), the PCA Ap and Bp are both ergodic, and the
probability of a draw is zero for both the percolation game and the target game on
Z2.

We prove ergodicity by considering the envelope PCAs corresponding to Ap and
Bp, which are PCAs with an expanded alphabet {0, ?, 1}. The envelope PCA
corresponds to the status of the game started from each site (with the symbols 0,
? and 1 corresponding to wins, draws and losses respectively). An evolution of
the envelope PCA can be used to encode a coupling of two copies of the original
PCA, with a ? symbol denoting sites where the two copies disagree. We introduce
a new method involving a positive weight assigned to each ? symbol (whose value
depends on the state of nearby sites). The correct choice of weights is delicate
and non-obvious. We show that if the process is translation-invariant, then the
average weight per site strictly decreases under the evolution of the envelope PCA,
unless it is 0. It follows that any translation-invariant stationary distribution for
the envelope PCA has no ? symbols, with probability 1, and from this we will be
able to deduce that the game has no draws with probability 1, so that the original
PCA is ergodic. Although the proof of ergodicity could be phrased so as not to
refer to games, the notion is useful as a semantic tool and a guide to intuition.

Our proof of Theorem 1 follows almost identical steps for the PCA Bp (and the
target game) as for Ap (and the percolation game). However, in some respects the
two cases are very different. In particular, for the percolation game, combining
Theorem 1 with known methods permits an explicit description of the distribution
of game outcomes along a diagonal, as a Markov chain. Consequently, we show
that the probability that the first player wins the percolation game or the origin
is closed is

(1.1)
1

2

(
1 +

√
p

4− 3p

)
.
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Figure 4. The probability that the first player wins the percolation
game, conditional on the origin being open, as a function of the
density p of closed sites.

See Figure 4 for the conditional first player win probability given that the origin
is open. This conditional probability is greater than 1/2 if and only if p ∈ (0, 1/3),
and is maximized at p = (2 −

√
3)/3 = 0.0893.... These methods seemingly do

not work for the target game, and we do not know an explicit expression for
the win probability. Furthermore, for an alternative misère version of the game
(see Question 4.5 in the final section of the paper) there is apparently no similar
connection to a PCA with alphabet {0, 1}, and we do not have a proof that the
probability of a draw is 0. This is somewhat reminiscent of the situation for sums
of combinatorial games [Con01], where the well-developed theory of “normal play”
games extends only in very limited cases to their misère cousins.

1.2. Higher dimensions and the hard-core model. We also consider exten-
sions of the percolation game, described above for Z2, to more general directed
graphs, and in particular to lattices in higher dimensions. Theorem 1 tells us that
in two dimensions, the probability of a draw is 0 for all positive p, but we find a
very different picture in three and higher dimensions.

Let G = (V,E) be a locally finite directed graph. For x ∈ V , let Out(x) and
In(x) be the sets of out-neighbours and in-neighbours of x respectively. For the
percolation game on G, let each vertex x be closed with probability p and open
with probability 1− p, independently for different vertices. A token starts at some
vertex, and the two players move alternatively; if the token is currently at x, a
move consists of moving it to any vertex in Out(x). The token is only allowed
to move to open sites; if all the vertices in Out(x) are closed, then the player to
move loses the game.
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For graphs G with an appropriate structure, we develop a connection to the
hard-core model on a related undirected graph in one fewer dimensions, to obtain
a criterion under which the game is drawn with positive probability.

For an undirected graph with vertex set W , and any λ > 0, a Gibbs distribution
for the hard-core model on W with activity λ is a probability distribution on
configurations η ∈ {0, 1}W such that

(1.2) P
(
η(v) = 1

∣∣∣ (η(w) : w 6= v)
)

=


λ

1 + λ
,

if η(w) = 0 for all
neighbours w of v;

0, otherwise.

Any such Gibbs distribution is concentrated on configurations η that correspond
to independent sets, in the sense that no two neighbouring vertices v and w have
η(v) = η(w) = 1. If W is finite, then there is a unique Gibbs distribution, which is
the probability distribution that puts weight proportional to

∏
v∈W λη(v) on each

configuration η that is supported on an independent set. However, for infinite
graphs, there may be multiple Gibbs distributions. A well-known example is
the lattice Zd with nearest-neighbour edges. For d = 1, there is a unique Gibbs
distribution for all activities λ. However, for d ≥ 2, there exist multiple Gibbs
distributions when λ is sufficiently large [Dob65].

Returning to the percolation game on a directed graph G, we now give the key
assumptions on G that are required for our dimension reduction method. Suppose
there is a partition (Sk : k ∈ Z) of the vertex set V of G, and an integer m ≥ 2,
such that the following conditions hold.

(A1) For all x ∈ Sk, we have Out(x) ⊂ Sk+1 ∪ · · · ∪ Sk+m−1.
(A2) There is a graph automorphism φ of G that maps Sk to Sk+m for every k,

and such that Out(x) = In(φ(x)) for all x.

Then let Dk be the graph with vertex set Sk ∪ · · · ∪ Sk+m−1, with an undirected
edge (x, y) whenever (x, y) is a (directed) edge of V . (Below for convenience we
will also use Dk to denote the vertex set Sk ∪ · · · ∪ Sk+m−1.) It is straightforward
to show that under conditions (A1) and (A2), the graphs Dk are isomorphic to
each other for all k ∈ Z (see Lemma 3.1); write D for a generic graph which is
isomorphic to any of the Dk. Then we have the following criterion for positive
probability of draws.

Theorem 2. Suppose that the directed graph G satisfies (A1) and (A2). If there
exist multiple Gibbs distributions for the hard-core model on D with activity λ,
then the percolation game on G with p = 1/(1 + λ) has positive probability of a
draw from some vertex.



8 HOLROYD, MARCOVICI, AND MARTIN

The simplest case in which to understand the conditions (A1) and (A2) is when
G is the directed lattice Z2, with Out(x) = {x+ (1, 0), x+ (0, 1)} (the setting of
Theorem 1 in Section 1.1). Then we may take the partition of Z2 into Northeast-
Southwest diagonals given by Sk := {(x1, x2) : x1 + x2 = k}, along with the
bijection φ(x) = x+ (1, 1), and m = 2. The graph D then consists of the vertices
of two successive diagonals, and is thus isomorphic to the line Z. (In the context
of PCA, D is sometimes called the doubling graph.)

Since, as noted above, there is a unique Gibbs distribution for the hard-core model
on Z for all λ > 0, Theorem 2 does not imply the existence of draws for any
p ∈ (0, 1). (Indeed, that would contradict Theorem 1).

In higher dimensions the picture is different. We will give several examples of
relevant graphs in Section 3.2 and Theorem 3 below. For the current discussion,
consider the case where G has vertex set Zdeven := {x ∈ Zd :

∑
xi is even}, with

directed edges given by Out(x) := {x ± ei + ed : 1 ≤ i ≤ d − 1} (where ei is
the ith standard basis vector in Zd). So Out(x) has size 2(d − 1); any move
of the game increases the dth coordinate by 1 and also changes exactly one of
the other coordinates by 1 in either direction. In two dimensions, this game is
isomorphic to the original game on Z2. For general d, conditions (A1) and (A2)
hold with m = 2 if we set Sk = {x ∈ Zdeven : xd = k} and φ(x) = x + 2ed. One
then finds that D is isomorphic to the standard (d− 1)-dimensional cubic lattice
Zd−1 with nearest-neighbour edges. As mentioned above, there are multiple Gibbs
distributions for the hard-core model on Zd−1 whenever d ≥ 3 and λ is large
enough; then Theorem 2 tells us that the percolation game on G has positive
probability of a draw when p is sufficiently small. We do not know whether the
draw probability is monotone in p, nor even whether it is supported on a single
interval (giving a single critical point).

To prove Theorem 2, we consider a recursion, analogous to the earlier PCA,
expressing game outcomes starting from vertices in Sk in terms of outcomes
starting in Sk+1 ∪ · · · ∪ Sk+m. Via the graph isomorphism from Dk to D, the
iteration of this recursion can be reinterpreted as a version of Glauber dynamics for
the hard-core model on D. If the hard-core model has multiple Gibbs distributions,
then they correspond to multiple stationary distributions for the recursion on G,
and from this we will deduce that draws occur.

The stationary distributions for the recursion on G that arise from the above
correspondence have a certain special property, which in the case m = 2 can be
viewed as a version of time-reversibility. In cases where the hard-core model has
a unique Gibbs distribution (such as when G = Z2 and D = Z), the argument
implies that the recursion has only one stationary distribution with this reversibility
property, but says nothing about the possibility of other stationary distributions.
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It is for this reason that the implication in Theorem 2 is in only one direction, and
that the proof of Theorem 1 requires a different argument.

Unfortunately, the following very natural example is not amenable to our methods.
Let G be the standard cubic lattice Zd with edge orientations given by Out(x) =
{x + ei : 1 ≤ i ≤ d}. Theorem 2 does not apply for d ≥ 3, because there is no
choice of m and the automorphism φ such that (A2) holds. We conjecture that,
nonetheless, the percolation game has positive probability of a draw whenever p is
sufficiently small.

1.3. Further background. The celebrated positive rates conjecture is the asser-
tion that in one dimension, any finite-state finite-range PCA is ergodic, provided
the transition probability to any state given any neighbourhood states is positive
(the latter is the “positive rates” condition). This contrasts with two and higher
dimensions, where for example the low temperature Ising model is well-known to be
non-ergodic. Despite persuasive heuristic arguments in favour of the positive rates
conjecture, Gács [Gác01] has given an extremely complicated one-dimensional
PCA refuting it. (See also [Gra01].) However, it is still natural to hypothesize
that all “sufficiently simple” one-dimensional PCA with positive rates are ergodic.

The PCA Ap and Bp are very simple, but do not satisfy the positive rates condition.
(E.g. in Ap, the word 11 deterministically yields 0.). However, similar but weaker
conditions do hold; for example, any finite word in {0, 1}n has positive probability
of yielding any word in {0, 1}n−2 after two steps of the evolution. In light of this
and the above remarks, it would have been very surprising if these PCA were not
ergodic. Nonetheless, proving ergodicity is often very difficult, even in cases where
it appears clear from heuristics or simulations.

Another case in point is the notorious noisy majority model on Zd. Here, a
configuration is an element of {0, 1}Zd

. The update rule is that with probability
1 − p, a site adopts the more popular value in {0, 1} among itself and its 2d
neighbours; with probability p it adopts the other value. In dimensions d ≥ 2 it
is expected that this PCA should behave similarly to the Ising model: it should
be ergodic for p sufficiently close to 1/2, and non-ergodic for p sufficiently small,
with a unique critical point separating the two regimes. However, proving any
of this appears very challenging. See e.g. [BBJW10, Gra01] and the references
therein for more information. One key difficulty with the noisy majority model is
the lack of reversibility of the dynamics (in contrast to the Glauber dynamics for
the Ising model, for example). This can be compared to the difficulty of obtaining
a result like Theorem 2 in the absence of conditions such as (A1) and (A2); see
the discussion above at the end of Subsection 1.2.

In a different direction, a variant of the notion of envelope cellular automata has
recently been combined with percolation ideas in [GH15], to prove the surprising
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fact that certain deterministic one-dimensional cellular automata exhibit order
from typical finitely supported initial conditions, but disorder from exceptional
initial conditions.

1.4. Organization of the paper. In Section 2 we explain the link between the
PCA Ap and Bp and the percolation game and target game respectively in Z2. We
also establish several basic results concerning monotonicity and ergodicity. The
local weighting on configurations is introduced in Subsection 2.3, and the proof of
ergodicity is then given in Subsection 2.4.

The relation to the hard-core model is then developed in Section 3. We start by
considering the case of Z2 where the ideas are simplest, and in particular we will
derive the formula (1.1) for the winning probability. The general case is then
treated in Subsection 3.2, where Theorem 2 is proved. In Subsection 3.4 and
Theorem 3, we give a variety of examples of the application of Theorem 2 to
graphs with vertex set Zd for d ≥ 3, for which the role of the doubling graph D is
played by various lattice structures. We also give an extension of Theorem 2 in
Proposition 3.1 in Subsection 3.5, using a variant form of the correspondence to
the hard-core model.

We conclude in Section 4 with some open problems.

2. Percolation games and probabilistic cellular automata

2.1. The PCA for the percolation game. Consider the percolation game on
Z2 as defined in the introduction.

Suppose x is an open site of Z2. Let η(x) be W, L or D according to whether the
game started with the token at x is win for the first player, a loss for the first
player, or a draw, respectively. (Recall that we assume optimal play, with the
players able to see entire configuration of open and closed sites when deciding on
their strategies). If x is a closed site, it is convenient to set η(x) = W. (We can
imagine that a player is allowed to move the token to x, but with the effect that
the game is then declared an immediate win for the opponent).

Recall that Out(x) = {x + e1, x + e2} is the set of sites to which the token can
move from x. By considering the first move, we have the following recursion for
the status of the sites:

(2.1)

x closed ⇒ η(x) = W;

x open ⇒ η(x) =


L if η(y) = W for all y ∈ Out(x)

W if η(y) = L for some y ∈ Out(x)

D otherwise.



PERCOLATION GAMES 11

0 0

0
1

w. prob. p
w. prob. 1− p

∗
1

1
∗

0

?
0
?

0
?
?

0
?

w. prob. p
w. prob. 1− p

Figure 5. The PCA Fp (∗ denotes an arbitrary symbol).

For k ∈ Z, let Sk be the set {x = (x1, x2) ∈ Z2 : x1 + x2 = k}, a NW-SE diagonal
of Z2. The recursion (2.1) gives us the values (η(x) : x ∈ Sk) in terms of the values
(η(x) : x ∈ Sk+1) together with the information about which sites in Sk are closed.

It is important to note that it is not a priori clear whether the recursion (2.1)
suffices to determine η uniquely from the configuration of open and closed sites.
Indeed, in the trivial case p = 0 when all sites are open, we have η(x) = D for all
x, but (2.1) has other solutions: one is to set η′(x) equal to L or W according to
whether x1 + x2 is odd or even. Such considerations are in fact central to many of
our arguments. One way to interpret our main result, Theorem 1, is as saying that
(2.1) does have a unique solution almost surely for all 0 < p < 1 (and similarly
for the target game). In contrast, for the higher dimensional variants considered
later, the analogous recursions admit multiple solutions for suitable p.

Via (2.1), we can regard the configurations on successive diagonals Sk, as k
decreases, as successive states of a one-dimensional PCA. Let us introduce the
following recoding:

W = 0, L = 1, D = ?.

(In the coupling arguments below, the symbol ? will be interpreted as marking
a site at which the value is “unknown”. The choice to assign W = 0 and L = 1,
rather than the other way around, say, will be important for the later connection
with hard-core models.) The PCA evolves as follows: given the values for sites in
Sk+1, each value η(x) for x ∈ Sk is derived independently using the values η(x+e1)
and η(x+ e2), according to the scheme given in Figure 5 (where a ∗ represents an
arbitrary symbol in {0, ?, 1}).
We denote the corresponding PCA Fp. Although we have defined it as a process in
the plane, we can also regard it as a PCA on Z with a configuration in {0, ?, 1}Z
evolving in time by setting

(2.2) ηt(n) = η
(
(−t− n, n)

)
.
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(Here we have made the arbitrary choice to offset leftward as time increases,so
that the PCA rule gives ηt+1(n) in terms of ηt(n) and ηt(n+ 1).) As in Section 1.1,
formally we take Fp to be an operator on the set of distributions on {0, ?, 1}Z
representing the action of the PCA.

In the setting of the percolation game, translation invariance of the whole process
on Z2 implies that the distribution of the configuration on the diagonal Sk does
not depend on k; that is, the distribution of

(
η((k − n, n)) : n ∈ Z

)
does not

depend on k and is a stationary distribution of Fp. In addition, this distribution
is itself invariant under the action of translations of Z.

We next note two useful monotonicity properties for the PCA Fp. In terms of the
game, they have natural interpretations: (i) an advantage for one player translates
to a disadvantage for the other; and (ii) declaring draws at some positions can
only result in more draws elsewhere.

Lemma 2.1. Let µ and ν be probability distributions on {0, ?, 1}Z.

(i) If µ ≤ ν, where ≤ denotes stochastic domination with respect to the
coordinatewise partial order induced by 0 < ? < 1, then Fpµ ≥ Fpν. (Note
the reversal of the inequality).

(ii) If µ E ν, where E denotes stochastic domination with respect to the
coordinatewise partial order induced by 0 C ? B 1, then Fpµ E Fpν.

Proof. We can use the recursion (2.1) to give a coupling of a single step of
the PCA Fp started from two different configurations. Suppose we fix values
(η(x) : x ∈ Sk+1) and (η̃(x) : x ∈ Sk+1), in such a way that η(x) ≤ η̃(x) for
all x ∈ Sk+1 (where ≤ is the coordinatewise order on configurations induced by
0 < ? < 1). Now use (2.1) to obtain values η(x) and η̃(x) for x ∈ Sk, using the
same realization of closed and open sites in Sk in each case. It is straightforward
to check that in that case η(x) ≥ η̃(x) for each x ∈ Sk. Hence the operator Fp is
decreasing in the desired sense.

Similarly, if η(x) E η̃(x) for all x ∈ Sk+1, then we obtain η(x) E η̃(x) also for each
x ∈ Sk. So in this case the operator Fp is increasing as desired. �

If we restrict the PCA Fp to configurations that do not contain the symbol ?,
we recover precisely the hard-core PCA Ap defined in the introduction. In the
terminology of Bušić et al. [BMM13], the PCA Fp is the envelope PCA of Ap. A
copy of the PCA Fp can be used to represent a coupling of two or more copies of
the PCA Ap, started from different initial conditions. The symbol ? represents
a site whose value is not known, i.e. one which may differ between the different
copies.
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Specifically, consider starting copies of the hard-core PCA Ap from several different
initial conditions, represented by configurations on the diagonal Sk for some fixed
k. As in the proof of Lemma 2.1, a natural coupling is provided by the recursion
(2.1), using the same realization of the closed and open sites on (Sr : r < k). In
particular, let k > 0 and consider three copies η, η̃ and η?, with η and η̃ started
from arbitrary initial conditions on Sk, while η?(x) = ? for all x ∈ Sk. (So that η?

is maximal for the ordering E in Lemma 2.1(ii)). Then we have that η(x) E η?(x)
and η̃(x) E η?(x) for all x ∈ Sr with r < k. This implies that if η(x) 6= η̃(x), then
η?(x) = ?.

In terms of the game, we have the following interpretation: if the origin O = (0, 0)
is an open site, and η?(O) = 0 (respectively η?(O) = 1) then the first (respectively
second) player can force a win within at most k moves of the game.

The ergodicity of an envelope PCA implies the ergodicity of the original PCA,
but the converse is not true in general. In our case, however, we can use the
monotonicity property in Lemma 2.1(i) to show that the two are equivalent.

Proposition 2.1. The PCA Fp is ergodic if and only if Ap is ergodic.

Proof. It is clear from the definitions that if Fp is ergodic, then Ap is also ergodic.
Conversely, suppose that Ap is ergodic. Let µ be a distribution on {0, ?, 1}Z,
and let δ0 and δ1 the distributions concentrated on the configurations “all 0s”
and “all 1s”. Then δ0 ≤ µ ≤ δ1, so by Lemma 2.1(i), for k ≥ 0 we have either
F k
p δ0 ≤ F k

p µ ≤ F k
p δ1 or F k

p δ0 ≥ F k
p µ ≥ F k

p δ1, according to whether k is even or

odd. But F k
p δ0 = Akpδ0 and F k

p δ1 = Akpδ1, and by ergodicity of Ap, the latter two

sequences converge as k →∞ to the same distribution π, so F k
p µ also converges

to π. Thus Fp is also ergodic. �

Proposition 2.2. For each p ∈ [0, 1], the percolation game has probability 0 of a
draw if and only if Ap is ergodic.

Proof. If Ap is ergodic then so is Fp, and so the unique invariant distribution of
Fp has no ? symbols. But we know that the distribution of the game outcomes
along a diagonal Sk is invariant for Fp. Hence with probability 1, there are no
sites from which the game is drawn.

For the converse, let ω be a random configuration of open and closed sites on Z2

chosen according to the percolation measure. Consider any site x ∈ S0. If the
game started from x is not a draw, then (since at each turn the player to move
has only finitely many options) one player has a strategy that guarantees a win
in fewer than N moves, where N ∈ N is a finite random variable that depends
on ω. Consequently, if we assign any configuration of states 0, ?, 1 to SN and
compute the resulting states on (Sn : 0 ≤ n < N) using the recursion (2.1) and
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Figure 6. The PCA Gp.

the configuration ω of open and closed sites, the resulting state at x is the same
as its state for the percolation game on Z2 with configuration ω.

Let γ be the random configuration of game outcomes on S0 arising from ω. Also,
fix a distribution ν on {0, 1}Z, and let γn be the configuration on S0 that results
from assigning a configuration with law ν to Sn, independent of ω, and applying
(2.1) as described above. By the argument in the previous paragraph, if the
probability of a draw is 0, then γn converges almost surely to γ (in the product
topology). Hence also the distribution of γn converges to that of γ. But γn has
distribution Anpν, so Anpν converges as n→∞ to the distribution of γ, which does
not depend on ν. Hence Ap is ergodic. �

2.2. The target game and the corresponding PCA. We now turn to the
target game, in which the winner is the first player to move to a closed site. As
before, we can introduce a PCA to describe the status of the positions. The
recursion (2.1) still applies when x is open, but now if x is closed we set instead
η(x) = L = 1. The equivalents of Ap and Fp for the target game are the PCA Bp

and Gp defined via Figures 3 and 6.

We may see the PCA Bp as a composition of Stavskaya’s PCA and the flip operator.
Stavskaya’s PCA (see for example [TVS+90]) is given by the local rule which sets
ηt(n) = 0 with probability p and otherwise ηt(n) = max{ηt−1(n), ηt−1(n− 1)}, and
provides a non-trivial example of a one-dimensional PCA where ergodicity fails.
However, the ergodicity of the PCA Bp has not been studied previously. As in the
case of Ap, it does not satisfy any of the previously known criteria for ergodicity.

Using exactly the same arguments as for Proposition 2.1 and Proposition 2.2, we
have the following results.

Proposition 2.3. The PCA Gp is ergodic if and only if Bp is ergodic.

Proposition 2.4. The target game has probability 0 of a draw if and only if Bp

is ergodic.
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Figure 7. The deterministic cellular automaton D.

Below we will show that, for all p > 0, any stationary distribution for Fp or for
Gp is concentrated on {0, 1}Z, so that the probability of a ? symbol is 0. Using
Propositions 2.1 and 2.2, or 2.3 and 2.4 respectively, we will then be able to deduce
the ergodicity of Ap and Bp as required for Theorem 1.

2.3. The weight function. We are concerned with the two PCA Ap and Bp on
the alphabet {0, 1}, shown in Figures 2 and 3, and their envelope PCA Fp and
Gp, shown in Figures 5 and 6.

We introduce a deterministic cellular automaton D defined in Figure 7. (Note
that D = F0 = G0).

We also introduce the randomization operator R0
p on {0, ?, 1}Z that changes each

symbol into a 0 with probability p (making no change if it was already a 0),
independently for different sites, and similarly the operator R1

p that changes each
symbol into a 1 with probability p, independently for different sites. Observe that

Fp = R0
p ◦D and Gp = R1

p ◦D.

We now establish a property of the deterministic operator D. For a given configu-
ration in {0, ?, 1}Z, let us weight the occurrences of the symbol ? as follows:

• if a ? is followed by a 01, then it receives weight 3;
• if a ? is followed by a 0 and then by something other than a 1, it receives

weight 2;
• otherwise, a ? receives weight 1.

We say that the distribution of a configuration η = (ηi : i ∈ Z) is shift-invariant
if η and (ηi+k : i ∈ Z) have the same distribution for each k ∈ Z, and reflection-
invariant if η and (η−i : i ∈ Z) have the same distribution. If µ is a distribution
and w ∈ {0, ?, 1}n is a finite word, we write µ(w) := µ{η : (η1, . . . , ηn) = w} for
the corresponding cylinder probability. For a shift-invariant distribution µ on
{0, ?, 1}Z, we introduce the quantity:

µ(?01) + µ(?0) + µ(?),
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which is the expected weight per site under µ.

Lemma 2.2. If µ is a shift-invariant and reflection-invariant distribution on
{0, ?, 1}Z, then

Dµ(?01) +Dµ(?0) +Dµ(?) ≤ µ(?01) + µ(?0) + µ(?).

Proof. By looking at the possible pre-images of each pattern, we obtain the
following three equalities:

Dµ(?) = µ(??) + µ(0?) + µ(?0),

Dµ(?0) = µ(??1) + µ(0?1) + µ(?01),

Dµ(?01) = 0.

Summing, and using reflection invariance to deduce µ(0?) = µ(?0), we obtain

(2.3) Dµ(?01) +Dµ(?0) +Dµ(?)− µ(?01)− µ(?0)

= µ(??) + µ(0?) + µ(??1) + µ(0?1)

≤ µ(??) + µ(0?) + µ(?1)

= µ(??) + µ(?0) + µ(?1)

= µ(?). �

Here is an informal way to explain the above result, which provides some insight
into the reasons for the choice of weight. Let us consider a symmetric version
of the weight system that we have introduced: for each symbol ?, we add its
right-weight, as introduced above, to its left-weight, which is equal to 3 if it the
previous letter is a 0 and if there is a 1 before it (pattern 10?), to 2 if the previous
letter is a 0 and if there is something else than a 1 before, and to 1 otherwise.
(Since in Lemma 2.2 we consider only reflection-invariant distributions, working
with the symmetric weight is equivalent to working with the original weight).

Thus, the weight of the symbol ? in the pattern 1?1 is equal to 1 + 1 = 2, while in
the pattern 10??1, the weight of the first ? symbol is 3 (left) + 1 (right) = 4, and
the weight of the second one is equal to 1 + 1 = 2.

Figure 8 shows an example of evolution of the deterministic CA D from an
initial configuration represented at the top (with time going down the page).
The symmetrized weights of the symbols ? appearing in the space-time diagram
are shown in red. As illustrated in the figure, from a pattern 1?1, the symbol ?
disappears and the weight thus decreases, but in other cases the total weight is
locally preserved.
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1 ? 1 1 0 ? ? 1 0

0 0 0 0 0 ? ? 0 0 1

1 1 1 1 ? ? ? 1 0

0 0 0 0 0 ? ? 0 0 1

1 1 1 1 ? ? ? 1 0
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2 2 2

3 3

2 2 2

3 3

Figure 8. Example of evolution of the weight of a configuration
under the operator D. Time runs down the page, and the weight of
each ? symbol is given below it.

2.4. Proof of ergodicity.

Proposition 2.5. For 0 < p < 1, the PCA Fp has no stationary distribution in
which the symbol ? appears with positive probability.

Proof. It suffices to show that there is no shift-invariant and reflection-symmetric
stationary distribution in which the symbol ? appears with positive probability. For
consider iterating the PCA starting from the distribution δ? concentrated on the
configuration with ? at all sites. By Lemma 2.1(ii), the probability F n

p δ?(?) is non-
increasing, and if there is any stationary distribution µ with positive probability
of ?, then F n

p δ?(?) is bounded below by µ(?) for all n, and so does not converge to
0. Then any limit point of the sequence of Césaro sums of F n

p δ? is a stationary
distribution that has positive probability of ?, and that is also shift-invariant and
reflection-symmetric.

For a shift-invariant distribution ν on {0, ?, 1}Z, we have the following three
equalities:

R0
pν(?) = (1− p)ν(?),

R0
pν(?0) = p(1− p) ν(?) + (1− p)2 ν(?0)

R0
pν(?01) = p(1− p)2 ν(?∗1) + (1− p)3 ν(?01).

Here ∗ represents an unspecified symbol to be summed over, so that ν(?∗1) :=∑
a=0,?,1 ν(?a1). Adding together these three equalities, we get

R0
pν(?) +R0

pν(?0) +R0
pν(?01) = ν(?) + ν(?0) + ν(?01) + p(1− p)2 ν(?∗1)

− p2 ν(?)− p(2− p) ν(?0)− p(3− 3p+ p2) ν(?01).(2.4)
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Let µ be a stationary distribution of Fp that is shift-invariant and reflection-
symmetric, and set ν = Dµ. Then, since Fp = Rp ◦D, we have R0

pν = µ. Hence
by Lemma 2.2,

ν(?01) + ν(?0) + ν(?) ≤ R0
pν(?01) +R0

pν(?0) +R0
pν(?).

Then, since p > 0, it follows from (2.4) that

(1− p)2ν(?∗1) ≥ pν(?) + (2− p)ν(?0) + (3− 3p+ p2)ν(?01)

≥ pν(?) + (2− p)ν(?0).(2.5)

We now proceed to obtain bounds for the left and right sides of (2.5) in terms
of cylinder probabilities of µ. We have µ(?) = R0

pν(?) = (1 − p)ν(?). Also
ν(?0) = Dµ(?0) = µ(?01) + µ(?1)− µ(1?1) = µ(?01) + µ(?1), since Fpµ = µ and
the pattern 1?1 has no preimage by Fp. We thus obtain:

pν(?) + (2− p)ν(?0) =
p

1− p
µ(?) + (2− p)

[
µ(?01) + µ(?1)

]
= pµ(?) + (2− p)

[
µ(?01) + µ(?1)

]
+

p2

1− p
µ(?)

≥ pµ(?1) + (2− p)
[
µ(?01) + µ(?1)

]
+

p2

1− p
µ(?)

≥ 2µ(?1) + µ(?01) +
p2

1− p
µ(?).(2.6)

But we have

(1− p)2ν(?∗1) = R0
pν(?∗1)

= µ(?∗1)

= µ(?01) + µ(??1) + µ(?11)

≤ µ(?01) + 2µ(?1).(2.7)

Putting together (2.5), (2.6) and (2.7) we obtain that µ(?) = 0 as required. �

We now turn to the PCA corresponding to the target game.

Proposition 2.6. For 0 < p < 1, the PCA Gp has no stationary distribution in
which the symbol ? appears with positive probability.

Proof. As in the proof of Proposition 2.5 we need only consider stationary dis-
tributions that are shift-invariant and reflection-symmetric. For a shift-invariant
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distribution ν on {0, ?, 1}Z, we have the following equalities:

R1
pν(?) = (1− p)ν(?)

R1
pν(?0) = (1− p)2ν(?0)

R1
pν(?01) = p(1− p)2ν(?0) + (1− p)3ν(?01).

Thus,

R1
pν(?) +R1

pν(?0) +R1
pν(?01) = ν(?) + ν(?0) + ν(?01) + p(1− p)2ν(?0)

− pν(?)− p(2− p)ν(?0)− p(3− 3p+ p2)ν(?01).

Let µ be a shift-invariant, reflection-invariant, invariant distribution of Gp, and
let ν = Dµ. Then, R1

pν = µ. By Lemma 2.2,

ν(?01) + ν(?0) + ν(?) ≤ R1
pν(?01) +R1

pν(?0) +R1
pν(?).

It follows that

(1− p)2ν(?0) ≥ ν(?) + (2− p)ν(?0) + (3− 3p+ p2)ν(?01)

≥ (2− p)ν(?0),

which is possible only if ν(?0) = 0. We then obtain µ(?0) = 0, and it follows easily
that µ(?) = 0. �

Now we can quickly deduce our main result.

Proof of Theorem 1. We know that the distribution of the states (win, loss, draw)
of the sites along a diagonal Sk in the percolation game is a stationary distribution
for Fp. Since by Proposition 2.5, Fp has no stationary distribution with positive
probability of ? for any p > 0, the probability of a draw in the percolation game
must be 0. Then by Proposition 2.2, the PCA Ap is ergodic for each p > 0.

An identical argument applies for the target game, and the PCA Bp, using
Propositions 2.6 and 2.4. �

3. Percolation games and the hard-core model

3.1. The two-dimensional case. In this section we develop the relationship
between the percolation game and the hard-core model. We start in the setting of
Z2 where the ideas are easiest to understand, but our main application will be in
Section 3.2, when we establish a more general framework, and apply it to show
that certain higher-dimensional games have positive probability of a draw when p
is sufficiently small.

Consider the hard-core PCA Ap. This PCA is known to belong to a family of
one-dimensional PCA having a stationary distribution that is itself a stationary
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Markov chain indexed by Z [BGM69, TVS+90, MM14b]. This distribution, µp
say, is the law of the stationary Markov chain on Z with transition matrix

(3.1) P =

(
p0,0 p0,1
p1,0 p1,1

)
=


2−p−
√
p(4−3p)

2(1−p)2
2p2−3p+

√
p(4−3p)

2(1−p)2

−p+
√
p(4−3p)

2(1−p)
2−p−
√
p(4−3p)

2(1−p)

 ,

on state space {0, 1}. (See Section 4.2 of [MM14a] – note that p there corresponds
to our 1− p). In fact, the evolution of the PCA started from µp is time-reversible
– the distribution of the two-dimensional space-time diagram obtained (via the
correspondence at (2.2)) is invariant under reflection in the line x1 + x2 = k for
any k. (In addition, the distribution µp is itself reversible as a Markov chain on Z,
which corresponds to symmetry of the two-dimensional picture under reflection in
the line x1 = x2).

By Theorem 1, we know that µp is in fact the unique stationary distribution of
Fp, and therefore the probability that the first player wins the percolation game
starting from the origin is, as claimed in (1.1),

µp(0) =
p1,0

p1,0 + p0,1
=

1

2

(
1 +

√
p

4− 3p

)
.

(The conditional probability of a win given that the origin is open is then given by
(µp(0)− p)/(1− p).)
An illuminating way to understand the presence of this Markovian reversible
stationary distribution is to consider the doubling graph of the PCA, corresponding
to two consecutive times of its evolution [Vas78, KV80, TVS+90]. This is an
undirected bipartite graph, connecting sites between which there is an influence
induced by the rules of the PCA.

As in Section 2.1, we can think of a configuration of the PCA as indexed by
a diagonal Sk = {(x1, x2) : x1 + x2 = k} of Z2. A time-step of the PCA then
corresponds to moving from a configuration on Sk+1 to a configuration on Sk.

As before, let Out(x) = {x+ e1, x+ e2} for x ∈ Sk. The elements of Out(x) lie in
Sk+1, and are the sites to which the token may move from sites x; they are the
sites whose values appear on the right side of the recurrence (2.1) for the value
η(x). Then the bijection φ : Z2 → Z2 given by

(3.2) φ(x) = x+ e1 + e2,

which maps Sk to Sk+2 for each k, has the following symmetry property: for all x
and y,

(3.3) y ∈ Out(x) if and only if φ(x) ∈ Out(y).
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Figure 9. The doubling graph D, isomorphic to Z, shown on the
left in correspondence with two successive diagonals Sk, Sk+1 of Z2.

Let Dk be the undirected bipartite graph with vertex set Sk ∪ Sk+1, and an edge
joining x ∈ Sk and y ∈ Sk+1 if y ∈ Out(x).

The graphs Dk are isomorphic to each other for all k ∈ Z. The doubling graph
is a generic graph D that is isomorphic to each Dk. We can also interpret D as
the image of Z2 under the equivalence relation x ≡ φ(x). In the case currently
under discussion, we can take D to be simply Z, with nearest-neighbour edges, as
shown in Figure 9. Consider the map v : Z2 → Z given by

(3.4) v
(
(x1, x2)

)
= x1 − x2.

Restricted to the set Sk ∪ Sk+1, this gives an isomorphism between Dk and D, for
any k.

Recall the definition of the hard-core model as given in Section 1.2; a Gibbs
distribution for the hard-core model on a graph with vertex set W with activity
λ > 0 is a distribution on configurations η ∈ {0, 1}W satisfying (1.2).

Consider the hard-core model on the doubling graph D with vertex set W = Z.
This is a bipartite graph, with bipartition W = W0∪W1 where W0 and W1 are the
sets of even and odd integers respectively. We consider the following two update
procedures for configurations on {0, 1}W . For an “odd” update, for each vertex
x ∈ W1 independently, resample η(x) according to the values at its two neighbours,
setting η(x) = 0 with probability 1 if either of the neighbours takes value 1, and
otherwise setting η(x) = 1 with probability 1− p. For an “even” update, do the
same for vertices in W0. Set λ = 1/p− 1, so that 1− p = λ/(1 + λ). Since each of
W0 and W1 is an independent set of D, any Gibbs distribution for the hard-core
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µp

µp

Ap Ap

Figure 10. The Markovian distribution corresponding to a Gibbs
measure for the hard-core model on the doubling graph W yields
a Markovian distribution µp on each of the two vertex classes W0

and W1. Since the Gibbs distribution is invariant under the update
procedures, the distribution µp is invariant for the PCA.

model with activity λ is invariant under both of these update operations. (This is
a version of Glauber dynamics).

Take some even k ∈ Z. Suppose we start from a configuration on {0, 1}W , which,
via the isomorphism (3.4) between D and Dk under which W0 maps to Sk and W1

to Sk+1, corresponds to a configuration in {0, 1}Sk∪Sk+1 . Perform an odd update,
resampling the sites of W1, leading to a new configuration on {0, 1}W . Considering
now (3.4) as an isomorphism between Dk and Dk−1, which maps W0 to Sk and W1

to Sk−1, the updated configuration on {0, 1}W corresponds to a configuration in
{0, 1}Sk−1∪Sk , whose values at the sites in Sk are left unchanged. We can interpret
the update as generating a configuration on Sk−1 from a configuration on Sk. This
procedure is identical to that which occurs in one iteration of the PCA Ap.

If we then perform an even update, resampling the sites of W0, we can pass in the
same way to a configuration on the sites of Sk−2 ∪ Sk−1, which corresponds to the
next step of the PCA.

Continuing to perform odd and even updates alternately, we reproduce the evo-
lution of the PCA. A Gibbs distribution on D is characterized by its marginal
on the vertices of one half of the bipartition, say W0. Since the distribution is
preserved by the updates, this distribution on {0, 1}W0 is 2-periodic for the PCA.

In fact, for any λ there is a unique Gibbs distribution for the hard-core model on
Z. Since the hard-core interaction is homogeneous and nearest-neighbour, this
Gibbs distribution is itself a stationary Markov chain indexed by Z. Let Q = Qp

be its transition matrix. Therefore, the marginal distributions on W0 and W1 are
in fact equal to each other. Call this marginal distribution µp. Then µp is the
law of the stationary Markov chain with transition matrix P = Q2. This µp is a
stationary distribution for the PCA Ap, and the matrix P is the one in (3.1). See
Figure 10 for an illustration.

As mentioned earlier, µp is a time-reversible stationary distribution for the evolution
of the PCA. This follows from the reversibility of the process of configurations
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on G under the update procedure (this is essentially the standard reversibility
property for Glauber dynamics and is easy to verify by checking the detailed
balance equations). In fact, from the uniqueness of the Gibbs distribution for the
hard-core model on G, one can deduce quite easily that there is only one reversible
stationary distribution for the hard-core PCA Ap. However, this argument does
not preclude the existence of other non-reversible stationary distributions. From
Theorem 1, we know that such distributions do not in fact exist, but proving this
required a different argument, as given in Section 2.4.

In contrast, in the next section we will use the implication in the other direction; in
situations where there exist multiple Gibbs distributions for the hard-core model,
we can conclude that there are multiple periodic distributions for the corresponding
PCA; then the PCA is non-ergodic, and draws occur with positive probability in
the corresponding game.

3.2. General framework. Recall that in the setting of Theorem 2, we have a
locally finite graph G with vertex set V , along with a partition (Sk : k ∈ Z) of V
and an integer m ≥ 2, such that conditions (A1) and (A2) given in Section 1.2
hold.

We also defined Dk be the graph with vertex set Sk ∪ · · · ∪ Sk+m−1, with an
undirected edge (x, y) whenever (x, y) is a (directed) edge of V . For convenience
we will also use Dk to denote the vertex set Sk ∪ · · · ∪ Sk+m−1.

Lemma 3.1. The graphs Dk are isomorphic to each other for all k ∈ Z.

Proof. Consider the map χk defined on Dk under which

χk(x) =

{
x if x ∈ Sk+1 ∪ · · · ∪ Sk+m−1
φ(x) if x ∈ Sk

.

From assumptions (A1) and (A2) above, χk is a graph isomorphism from Dk to
Dk+1. Hence indeed Dk and Dk+1 are isomorphic, and so by induction any two
Dk, Dk′ are isomorphic. �

We then take D to be a graph isomorphic to any Dk. (When m = 2 we sometimes
call D the doubling graph). Note that D is m-partite. Specifically, let us fix
some isomorphism f0 from D0 to D, and let Wi be the image of Si under f0, for
i = 0, . . . ,m− 1. Then (W0, . . . ,Wm−1) is a partition of the vertices of D into m
classes, and assumption (A1) guarantees that there are no edges within a class Wi.

It will be important that we can map both Dk and Dk+1 to D in such a way that
the vertices common to Dk and Dk+1 have the same image in both maps.
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Lemma 3.2. There exists a family of maps (fk : k ∈ Z) such that fk is a graph
isomorphism from Dk to D, and such that the following properties hold.

(a) For each k,

fk(x) =

{
fk+1(x) for x ∈ Dk ∩Dk+1 = Sk+1 ∪ · · · ∪ Sk+m−1
fk+1(φ(x)) for x ∈ Sk.

(b) For each k and each r ∈ {k, k + 1, . . . , k +m− 1}, the image of Sr under
fk is Wrmodm.

(c) Let x ∈ Sk and y ∈ Dk = Sk ∪ · · · ∪ Sk+m−1. Then y ∈ Out(x) if and only
if fk(y) is a neighbour of fk(x) in D.

Proof. Let f0 be the isomorphism from D0 to D described just above. Then we
can compose f with the isomorphisms χk defined in the proof of Lemma 3.1, by
setting

fk =

{
f0 ◦ χ−1 ◦ χ−2 ◦ · · · ◦ χk for k < 0

f0 ◦ χ−10 ◦ χ−11 ◦ · · · ◦ χ−1k−1 for k > 0.

Then using assumption (A2), it is easy to check by induction upwards and
downwards from 0 that fk is an isomorphism from Dk to D satisfying the properties
stated in (a) and (b), for each k.

Finally note that by (A1), if x ∈ Sk then Out(x) ⊆ Sk ∪ · · · ∪ Sk+m−1 while In(x)
is disjoint from Sk ∪ · · · ∪ Sk+m−1. By definition, the set of neighbours of x in the
graph Dk is then Out(x). Then part (c) follows since fk is a graph isomorphism
from Dk to D. �

Given a hard-core configuration in {0, 1}D, we can consider Glauber update steps
that resample the vertices of one of the vertex classes W0, W1, . . . ,Wm−1. To
perform an update of the class Wi: for each v ∈ Wi independently, let the new
value at v be 0 if any neighbour of x has value 1, and otherwise let the new value
at v be 0 with probability p = 1/(1 + λ) and 1 with probability 1− p = λ/(1 + λ).
If a distribution on {0, 1}D is a Gibbs distribution for the hard-core model on D
with activity λ = 1/p − 1, then it is invariant under this update procedure for
each i = 0, 1, . . . ,m− 1. (Again, this is a version of the Glauber dynamics for the
hard-core model on D.)

Proof of Theorem 2. We start by defining an analogue of the hard-core PCA Ap
in the general setting. As before, we have the recursion (2.1) for the outcome of
the game started from x ∈ V , in terms of the outcomes started from the elements
of Out(x) together with the information about whether x itself is open or closed.
(Recall that we treat the game from x as a win if x is closed.)
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As in previous sections we can specialize that recursion to configurations involving
only the symbols 0 = W and 1 = L. This gives the following recursion for a family
of variables (γ(x) : x ∈ V ) ∈ {0, 1}V (which we do not assume to be necessarily
game outcomes):

(3.5)

x closed ⇒ γ(x) = 0;

x open ⇒ γ(x) =

{
1 if γ(y) = 0 for all y ∈ Out(x)

0 if γ(y) = 1 for some y ∈ Out(x).

If x ∈ Sk, then Out(x) ⊂ Sk+1 ∪ · · · ∪ Sk+m−1. Thus, the recursion (3.5) gives
(γ(x) : x ∈ Sk) in terms of (γ(x) : x ∈ Sk+1 ∪ · · · ∪ Sk+m−1) and the random
configuration of closed and open sites in Sk (which we take as usual to be product
measure with each site closed with probability p). This is analogous to the PCA
Ap considered earlier (although for m > 2, a “state” of the PCA is now more
complicated to describe).

Fix K ∈ Z, and take some boundary condition (γ(x) : x ∈ SK ∪ · · · ∪ SK+m−1),
which we allow to be be random, but which is independent of the configuration of
open and closed sites in

⋃
r<K Sr. Applying (3.5) repeatedly then generates an

evolution (γ(x) : x ∈ Sr)r≤K+m−1.

We will couple this evolution with a process of configurations in {0, 1}D. For
k ≤ K and v ∈ D, define σk(v) = γ(f−1k (v)). Then σk ∈ {0, 1}D for each k. The
idea is now to show that the transformation from σk+1 to σk is identical to a
hard-core update of the vertex class Wkmodm, with randomness provided by the
configuration of open and closed vertices in Sk. Notice that σk+1 is a function of
(γ(x) : x ∈ Sk+1∪· · ·∪Sk+m), while σk is a function of (γ(x) : x ∈ Sk∪· · ·∪Sk+m−1).
If v ∈ Wi where i 6= kmodm, then by Lemma 3.2(a) and (b), f−1k+1(v) = f−1k (v) ∈
Sk+1 ∪ · · · ∪ Sk+m−1. Thus σk+1(v) = σk(v). So the only sites in D which can
change their value between the configuration σk+1 and the configuration σk are
those in Wkmodm. Consider such a v ∈ Wkmodm, and let x = f−1k (v) so that x ∈ Sk
(by Lemma 3.2(b)) and σk(v) = γ(x).

Translating (3.5) and using Lemma 3.2(c) gives that for v ∈ Wkmodm:

(3.6)

x closed ⇒ σk(v) = 0;

x open ⇒ σk(v) =

{
1 if σk+1(u) = 0 for all u ∼ v

0 if σk+1(u) = 1 for some u ∼ v.

Each bit of randomness (the information about whether x ∈ Sk is open or closed)
is used only once. Since each x is closed with probability p independently, we have
that the conditional distribution of σk given σk+1, σk+2, . . . , σK is precisely that
obtained by performing a hard-core update of the vertex class Wkmodm.
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Now let µ be a Gibbs distribution for the hard-core model on D. By choosing
the distribution of the boundary condition (γ(x) : x ∈ SK ∪ · · · ∪ SK+m−1)
correspondingly, we can arrange that σK has distribution µ. But then since µ is
invariant under the hard-core updates, σk has distribution µ for all k < K also.

So, suppose that there exist multiple Gibbs distributions, and let µ and ν be two of
them. By alternating between µ and ν, we can arrange a sequence indexed by K of
boundary conditions (γ(K)(x) : x ∈ SK ∪ · · · ∪SK+m−1) that induces a sequence of

distributions of σ
(K)
0 having both µ and ν as limit points as K →∞. In particular,

the configuration σ
(K)
0 does not converge almost surely as K →∞ (in the product

topology). So the sequence of configurations (γ(K)(x) : x ∈ S0 ∪ · · · ∪ Sm−1) does
not converge almost surely.

Now we apply the same argument that we used for the second part of the proof
of Proposition 2.2. If the game started from x is not a draw, then one player
has a strategy which guarantees a win in fewer than N moves, where N ∈ N
is an almost surely finite random variable which depends on the percolation
configuration. Then the values γ(K)(x) must agree for all large enough K. Hence
if there is zero probability of a draw from each site, then the configuration
(γ(K)(x) : x ∈ S0 ∪ · · · ∪ Sm−1) converges almost surely as K → ∞. By the
argument in the previous paragraph, this contradicts the existence of multiple
hard-core Gibbs distributions. �

3.3. Remarks on the converse direction. We do not know whether the con-
verse of Theorem 2 holds; that is, whether the uniqueness of the hard-core Gibbs
distribution on D implies that there are no draws on G. Two separate issues arise.

First, assume that the hard-core Gibbs distribution is unique, and suppose we
wish to conclude that there is a unique distribution of the evolution (γ(x) : x ∈
G) ∈ {0, 1}V satisfying (3.5) that is stationary in the sense that (γ(x) : x ∈ G)
and (γ(φ(x) : x ∈ G) have the same law. Uniqueness of the hard-core distribution
gives only that there is a unique such law satisfying an additional condition, which
is that σk has the same distribution for all k (and not merely for any two k
which agree modm). In the case m = 2, this condition can be interpreted as a
reversibility property, although the precise meaning of this is complicated by the
lack of a canonical bijection between Sk and Sk+1. Specifically, the condition is
equivalent to the statement that the ordered pair [(γ(x) : x ∈ S0), (γ(y) : y ∈ S−1)]
has the same distribution as [(γ(x) : x ∈ S0), (γφ(y) : y ∈ S−1)]. In the example
of the game in Z2, this is also equivalent to symmetry of the law of the evolution
on Z2 under reflection in the line x1 + x2 = 0.
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However, there may be other stationary evolutions that do not satisfy such a
reversibility condition. (As mentioned before, our argument for Z2 rules these out
by a different method.)

Second, note that when G is bipartite (for example, whenever m = 2), the
uniqueness of law of a stationary evolution with the binary alphabet {0, 1} is
enough to imply that the probability of draws is zero. This follows by an argument
similar to the proof of Proposition 2.1, showing that the PCA on three symbols
{0, ?, 1} is ergodic whenever the binary PCA is ergodic.

However, if G is not bipartite (so that there are sites which can be reached on
the turn of either one of the players), then this argument breaks down. The
monotonicity associated to the stochastic order generated by 0 C ? B 1 (see
Lemma 2.1(ii)) still applies, but the monotonicity associated to the stochastic
order generated by 0 < ? < 1 (see Lemma 2.1(i)) fails; the operation analogous to
a single application of the operator Fp involves moving from a configuration on
the vertices Sk+1 ∪ · · · ∪ Sk+m to a configuration on the vertices Sk ∪ · · · ∪ Sk+m−1,
and these two sets overlap when m > 2.

Hence it is no longer clear that uniqueness for the binary PCA would imply the
same for the three-symbol PCA, as required to conclude that there are no draws.
Closely related examples in which ergodicity of a binary PCA does not imply
ergodicity of its envelope PCA are noted in [BMM13].

3.4. Example graphs with d ≥ 3. We now give several examples of graphs G
to which one may hope to apply Theorem 2. (As we will see, the result can indeed
be applied in some cases, but not in others.) We consider the vertex set V = Zd
(or subsets thereof), for various different choices of the set Out(x) of vertices to
which the token can move from x. In each case we consider the percolation game
in which each site is closed with probability p and open with probability 1 − p.
All our examples can be regarded as natural extensions of the original Z2 game,
in the sense that they reduce to it when we set d = 2.

Example 3.1. Let Out(x) = {x + ei : 1 ≤ i ≤ d}. So |Out(x)| = d. This is
perhaps the most natural extension of all. However we cannot apply Theorem
2 because there is no choice of the automorphism φ for which assumption (A2)
holds.

Example 3.2. Let Out(x) = {x± ei + ed : 1 ≤ i ≤ d− 1}. This is the example
already mentioned in Section 1.2. Here |Out(x)| = 2(d − 1). Since any step
preserves parity, it is natural to restrict to the set of even sites Zdeven := {x ∈ Zd :∑
xi is even}.
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Figure 11. The three-dimensional body-centred cubic lattice
(which is the doubling graph for the PCA associated to Exam-
ple 3.3 when d = 4). The two underlying copies of Z3 are shown
with red and with blue vertices. The black lines are the edges of
the body-centred cubic lattice, and the dotted red lines show the
nearest-neighbour edges in the red copy of Z3.

In two dimensions, the game is isomorphic to the original game on Z2. For general
d, conditions (A1) and (A2) hold with m = 2 if we set Sk = {x ∈ Zdeven : xd = k}
and φ(x) = x+ 2ed.

To obtain the doubling graph, consider Dk = Sk ∪ Sk+1 with an edge between
x ∈ Sk and y ∈ Sk+1 whenever y ∈ Out(x). This gives a graph isomorphic to the
standard cubic lattice Zd−1 (for example, the map

(x1, . . . , xd−1, xd)→ (x1, . . . , xd−1)

gives a graph isomorphism from D0 = S0 ∪ S1 to Zd−1).
The graph is vertex-transitive. By Theorem 2, if there exist multiple Gibbs
distributions for the hard-core model on Zd−1 with activity λ, then the percolation
game on G with p = 1/(1 + λ) has positive probability of a draw from any vertex.

Example 3.3. Now let Out(x) = {x± e1± e2 · · ·± ed−1 + ed}, so that |Out(x)| =
2d−1. Each step changes the parity of every coordinate, so we restrict to the
set Zdbcc = {x ∈ Zd : xi ≡ xj mod 2 for all i, j}. Putting an edge between x
and y whenever y ∈ Out(x), we obtain the body-centred cubic lattice in d
dimensions. This consists of two copies of (2Z)d, each offset from the other by
(1, 1, . . . , 1), so that each point of one lies at the centre of a unit cube of the other;
the edges are given by joining each point to the 2d corners of the surrounding unit
cube. See Figure 11 for an illustration.

Conditions (A1) and (A2) hold for m = 2 with Sk = {x ∈ Zdbcc : xd = k}
and φ(x) = x + 2ed. The doubling graph D isomorphic to Dk = Sk ∪ Sk+1 for
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Figure 12. Triangular lattice and hexagonal lattice.

each k is now the body-centered cubic lattice in d − 1 dimensions. The map
v(x) = (x1, x2, . . . , xd−1) from Zdbcc to Zd−1bcc restricts to an isomorphism between
Dk and D for each k.

When d = 2 or d = 3 the graph G is isomorphic to that in Example 3.2 above, but
for d ≥ 4 the graphs are different. Existence of multiple hard-core distributions
on Zd−1bcc will imply existence of draws on Zdbcc.

Example 3.4. Let Out(x) = {x+
∑

i∈S ei : S ⊂ {1, . . . , d} with 1 ≤ |S| ≤ d−1}.
So a move of the game corresponds to incrementing at least one, but not all, of
the coordinates by one. Then |Out(x)| = 2d − 2.

Conditions (A1) and (A2) hold with m = d if we set Sk = {x :
∑
xi = k} and

φ(x) = x+ e1 + e2 + · · ·+ ed. For d = 2 the game is the same as ever. For d > 2
there are some new features. For the first time we have m > 2, and the graph G is
not bipartite; from a given starting vertex, there are vertices that can be reached
when it is either player’s turn. The graph D is (d− 1)-dimensional and d-partite.
For d = 3, it corresponds to the triangular lattice. For example, the map

(3.7) (x1, x2, x3)→ x1(1, 0) + x2
(
−1

2
,
√
3
2

)
+ x3

(
−1

2
,−
√
3
2

)
is an isomorphism from Dk = Sk ∪ · · · ∪ Sk+m−1 to the triangular lattice for each
k.

Example 3.5. Fix r with 1 ≤ r ≤ d, and now restrict to sites x ∈ Zd such
that

∑
xi ≡ 0 or r mod d. For x with

∑
xi ≡ 0 mod d, let Out(x) = {x +∑

i∈S ei, for any S ⊂ {1, . . . , d} with |S| = r}. Meanwhile, for x with
∑
xi ≡

r mod d, let Out(x) = {x+
∑

i∈S ei, for any S ⊂ {1, . . . , d} with |S| = d− r}.
Now |Out(x)| = ( dr ) for all x. Replacing r by d− r gives an isomorphic graph, so
we may assume 1 ≤ r ≤ d/2. Then conditions (A1) and (A2) hold with m = 2,
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Figure 13. The cubic lattice and the diamond cubic graph.

with φ(x) = x +
∑d

i=1 ei, and with Sk = {x :
∑
xi = dk/2} for even k and

Sk = {x :
∑
xi = d(k − 1)/2 + r} for odd k.

For d = 2 (and hence r = 1) the game is the familiar two-dimensional game. For
d = 3 and r = 1, we get |Out(x)| = 3 and the doubling graph D is the two-
dimensional hexagonal lattice; this is the image of {x ∈ Zd :

∑
xi ≡ 0 or 1 mod 3},

with edges between x and y where y ∈ Out(x), under the map (3.7) above.

For d = 4 and r = 2, the graph G is isomorphic to the d = 4 case of Example 3.2
above, and so D is the standard cubic lattice Z3. For d = 4 and r = 1, we have
|Out(x)| = 4, and D is the so-called diamond cubic graph (see for example
Section 6.4 of [CS99]). This graph may, for example, be represented as{

y ∈ Z3 : y1 ≡ y2 ≡ y3 mod 2 and y1 + y2 + y3 ≡ 0 or 1 mod 4
}
,

with edges between nearest neighbours (which are at distance
√

3/4). This is the
image of {x ∈ Zd :

∑
xi ≡ 0 or 1 mod 3}, with edges between x and y where

y ∈ Out(x), under the mapy1y2
y3

 =

 x1 − x2 − x3 + x4
−x1 + x2 − x3 + x4
x1 + x2 − x3 − x4


(see [NS08]). See Figure 13 for an illustration.

Theorem 3. There is positive probability of a draw from every vertex for suffi-
ciently small p in the following cases: Example 3.2 for all d ≥ 3; Example 3.3 for
d = 3 and d = 4; Example 3.4 for d = 3; and Example 3.5 for d = 3 (with r = 1)
and d = 4 (with r = 1 or r = 2).
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Proof. In the cases listed, it is known that there exist multiple Gibbs distributions
for the hard-core model on the associated graph D when the activity parameter λ
is sufficiently high. For the standard cubic lattice in any dimension greater than
1, the result goes back to Dobrushin [Dob65]. Other models in two and three
dimensions were covered by Heilmann [Hei74] and Runnels [Run75], including the
triangular and hexagonal lattices in two dimensions and the body-centered cubic
lattice and the diamond cubic graph in three dimensions.

Theorem 2 shows that there is positive probability of a draw for small enough p
from some vertex, and since all the graphs G are vertex-transitive, the conclusion
holds for every vertex. �

It is expected that in fact the hard-core model onD has multiple Gibbs distributions
for λ sufficiently large in all of Examples 3.2–3.5 whenever d ≥ 3 (so that D has
dimension at least 2). This could likely be proved by Peierls contour arguments,
although this requires a suitable definition of a contour, which is typically graph-
dependent, and less straightforward than in other settings such as the Ising model.
Via Theorem 2, such non-uniqueness would imply existence of draws for the
corresponding graphs G.

We emphasize again that there is a more fundamental obstacle to proving existence
of draws for the standard oriented lattice Zd of Example 3.1, in that our condition
(A2) does not hold here.

3.5. Extending the hard-core correspondence. Various further extensions
can be made while still preserving the correspondence to the hard-core model. For
example, in the class of models considered in Theorem 2, we can augment the set
of allowable moves from site x to include the point φ(x) itself.

Specifically, replace (A1) and (A2) by the following assumptions:

(A1′) For all x ∈ Sk, Out(x) ⊂ Sk+1 ∪ · · · ∪ Sk+m−1 ∪ {φ(x)}.
(A2′) There is a graph automorphism φ of G that maps Sk to Sk+m for every

k, such that φ(x) ∈ Out(x) for all x, and such that Out(x) \ {φ(x)} =
In(φ(x)) \ x.

Define D as before; D is a graph isomorphic to any Dk, where Dk is the graph
with vertex set Sk∪· · ·∪Sk+m−1 and an undirected edge (x, y) whenever (x, y) is a
directed edge of V . Note now an edge (x, φ(x)) in G does not give a corresponding
edge in D.

Proposition 3.1. Suppose that the graph G satisfies (A1′) and (A2′). If there
are multiple Gibbs distributions for the hard-core model on D with activity λ < 1.
then the percolation game on G with p = 1− λ has positive probability of a draw
from some vertex.



32 HOLROYD, MARCOVICI, AND MARTIN

The method of proof is a slight variation on that of Theorem 2, which we indicate
briefly. To reflect the presence of the edge (x, φ(x)), we change the hard-core
update procedure. When we perform an update of the vertex class Wi, we now
add that any vertex v ∈ Wi which is in state 1 before the update must move to
state 0 after the update; otherwise the update at v proceeds as before.

Again one can show that hard-core Gibbs distributions are stationarity under
such updates, but now with the activity parameter λ equal to 1− p rather than
1/p− 1 as previously. (To verify the stationarity, one can start by checking the
detailed balance condition for an update at a single site; then if the distribution is
stationary for the update at any single site, it is also invariant under simultaneous
updates at any set of non-neighbouring sites.)

Note that now when p→ 0, we have λ→ 1 rather than λ→∞. Hence to show
existence of draws for some p, we need multiplicity of Gibbs distributions for some
λ < 1. For the case of the standard cubic lattice, Galvin and Kahn [GK04] show
that this holds for sufficiently high dimension, so that we can deduce the existence
of draws for the variant of Example 3.2 in which Out(x) = {x± ei + ed : 1 ≤ i ≤
d− 1} ∪ {x+ ed}, when d is sufficiently large.

4. Open questions

4.1. The oriented cubic lattice. For the percolation game on Zd (where the
allowed moves from site x are to any open site x+ ei for 1 ≤ i ≤ d), do there exist
any p ∈ (0, 1) and d ≥ 3 for which draws occur with positive probability?

4.2. Monotonicity and phase transition. For lattices where draws are known
to occur (for example, the even sublattice of Zd with d ≥ 3 and moves allowed
from x to any open x + ed ± ei for 1 ≤ i ≤ d − 1), is the probability of a draw
starting from the origin non-increasing in the density p of closed sites? Or, at
least, is the set of p that have positive draw probability a single interval containing
0 (so that there is a single critical point at the upper end of the interval)? If so,
what happens at the critical point? (It is also unknown whether the hard core
model on Zd has a single critical point for uniqueness of Gibbs distributions; see
e.g. [BGRT13] for discussion and recent bounds.)

4.3. Reversibility. For lattices where draws are known to occur, such as the
example described in question 4.2 above, do there exist {0, 1}-valued invariant
distributions for the game evolution that are not projections of a hard-core Gibbs
distribution on the graph D, and therefore lack the corresponding reversibility
property? Or is it the case that the game evolution has multiple invariant
distributions precisely when there are multiple hard-core Gibbs distributions?
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4.4. Target game win probability. Compute the winning probability for the
target game on Z2 (in which the winner is the first player to move to a closed
site).

4.5. Misère games. Besides our target game, there are other natural misère
variants. For example, suppose as before that moves are allowed from x ∈ Z2

to an open site in {x + e1, x + e2}, but now declare that if both these sites are
closed, then the player whose turn it is to move wins. Does this game have zero
probability of a draw for all p? Unlike the original percolation game or the target
game, there is apparently no useful correspondence to a PCA with alphabet {0, 1}.

4.6. Elementary probabilistic cellular automata. Is every elementary PCA
(i.e. one with 2 states and a size-2 neighhborhood) on Z with positive rates ergodic?
Can our weighting approach be extended to prove ergodicity for other PCA in
this class?

4.7. Undirected lattices. The following game is considered in [BHMW15]. As
usual, each site of Zd is independently closed with probability p, and two players
alternately move a token. From an open site x, a move is permitted to any open
nearest neighbour x± ei provided it has not been visited previously. A player who
cannot move loses. This game is closely related to maximum matchings, and this
is used in [BHMW15] to derive results for biased variants in which odd and even
sites have different percolation parameters. However, for the unbiased version
described above it is unknown whether there exist any p > 0 and d ≥ 2 for which
draws occur with positive probability.
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