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Abstract

Given a homogeneous Poisson point process in Rd, Häggström and
Meester [4] asked whether it is possible to place spheres (of differing
radii) centred at the points, in a translation-invariant way, so that
the spheres do not overlap but there is an unbounded component of
touching spheres. We prove that the answer is yes in sufficiently high
dimension.

1 Introduction

A sphere process is a simple point process Λ on Rd × [0,∞). The support
of Λ is the random set [Λ] = {(x, r) ∈ Rd × [0,∞) : Λ({(x, r)}) = 1}. If
(x, r) ∈ [Λ], we say that there is a sphere of radius r ∈ [0,∞) at x ∈ Rd.

The centre process Λ̃ is the point process on Rd given by the projection
Λ̃(·) = Λ(· × [0,∞)). We say that Λ is a Poisson sphere process if Λ̃ is a
homogeneous Poisson process.

A hard sphere process is one in which the interiors of the spheres do
not overlap; that is, almost surely

ρ(x, y) ≥ r + s for any distinct (x, r), (y, s) ∈ [Λ],
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where ρ denotes Euclidean distance. (Note in particular that, since all the
radii are non-negative, in a hard sphere process Λ no sphere may contain any
points of Λ̃ other than its own centre.) For z ∈ Rd the shifted sphere process
Λ + z is defined by (Λ + z)(A) = Λ(A − z), where A − z := {(x − z, r) :
(x, r) ∈ A}. The sphere process Λ is (translation-)invariant if Λ + z and Λ
are equal in law for all z ∈ Rd.

Let G(Λ) ⊆ Rd be the random set covered by all the spheres:

G(Λ) =
{
y ∈ Rd : ρ(y, x) ≤ r for some (x, r) ∈ [Λ]

}
.

The connected components of G(Λ) are called clusters. We say that Λ
percolates if there is an unbounded cluster. Our main result is the following.

Theorem 1 For all d ≥ 45, there exists a translation-invariant Poisson hard
sphere process Λ which percolates almost surely.

Häggström and Meester [4] studied several invariant continuum percola-
tion processes, and proved that the “lily-pond model” does not percolate.
This is a Poisson hard sphere process in which spheres grow from all Poisson
points at the same rate, and whenever two spheres touch, they both stop
growing. Häggström and Meester asked whether there exists an invariant
Poisson hard sphere process which percolates.

In dimension d = 1 it is easy to see that any Poisson hard sphere process
almost surely does not percolate. For consider 4 consecutive points x1 < x2 <
x3 < x4 of the Poisson process which satisfy x3−x2 > (x2−x1)+(x4−x3); then
the spheres centred at x2 and x3 cannot touch. Since such a configuration of 4
points appears infinitely often in a Poisson process, no percolation is possible.
It is unknown whether there exists a percolating Poisson hard sphere process
in dimensions 2 ≤ d ≤ 44 (even without the requirement of invariance).

Our explicit bound of 45 in Theorem 1 could probably be reduced with
some effort. Our construction certainly cannot be adapted to work in dimen-
sion 2 (and probably not in dimension that low).

Daley and Last [1] extended the non-percolation result for the lily-pond
model to general point processes. Jonasson [6] showed that in the hyperbolic
plane H2 there exists a hard sphere process that percolates when the Pois-
son process has sufficiently low intensity, but was unable to determine what
happens for high intensity. (In Rd, scaling shows that the intensity of the
process is immaterial). Other related work appears in [2, 5].

Note that our definition of a hard sphere process allows spheres of radius
zero. Our proof of Theorem 1 can in fact be adapted to prove the existence
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of an invariant percolating Poisson hard sphere process in which the spheres
all have positive radii. We explain this in a remark at the end of Section 4.

Our proof of Theorem 1 is in two parts. First we construct a non-invariant
hard sphere process Γ which percolates. Then we convert this to an invariant
process Λ by “stationarizing” - applying a uniform random translation in a
large ball, and taking a limit. The non-invariant construction of Γ proceeds as
follows. Starting from a Poisson process, we attempt to grow an unbounded
cluster iteratively. At each step we try to choose a radius for a new sphere
(centred at some Poisson point) so that it touches the cluster constructed so
far. This will be possible only if the proposed new sphere contains no other
Poisson points, and we need to ensure this happens sufficiently often that
the cluster can continue to grow. We do this by comparison with a certain
two-dimensional percolation process; in sufficiently high dimension we can
arrange that the probability of success at each step exceeds the relevant
critical probability.

To ensure that the stationarized version Λ also percolates, the unbound-
ed clusters of Γ should occupy a positive fraction of space – see below
for a precise statement. We will achieve this by repeating the essentially
two-dimensional construction described above in infinitely many “layers”
throughout Rd.

Let L denote Lebesgue measure on Rd, and denote the Euclidean ball
B(x, r) = Bd(x, r) := {y ∈ Rd : ρ(x, y) < r}, and the origin 0 = (0, . . . , 0).
Define the lower intensity of a random set A ⊆ Rd to be

D(A) = lim inf
r→∞

EL
(
A ∩ B(0, r)

)

LB(0, r)
.

For s > 0 define the s-neighbourhood of a set A ⊆ Rd to be

A{s} =
⋃

x∈A

B(x, s).

Using the construction sketched above, we shall prove the following result,
from which Theorem 1 will be deduced.
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Figure 1: Part of the lattice H∗

Theorem 2 For d ≥ 45 there exists a (not necessarily invariant) Poisson
hard sphere process Γ which percolates almost surely. Furthermore, Γ can be
chosen so as to have the following additional properties.

(i) The union I of all unbounded clusters satisfies lima→∞ D(I{a}) = 1.

(ii) There exists a constant K(d) < ∞ such that Γ(Rd × (K,∞)) = 0
almost surely; that is, there are no spheres of radius greater than K.

The article is organized as follows. In Section 2 we give the construction
that gives rise to the non-invariant process in Theorem 2. In Section 3 we
prove that the resulting process does indeed have the properties stated in
Theorem 2. In Section 4 we deduce Theorem 1.

2 Construction

In this section we describe the construction of the hard sphere process in
Theorem 2. We will prove that it has the required properties in the next
section. The construction is given in terms of parameters µ = 0.75, δ = 0.1,
ε = 0.01 and C, where C = C(d) is a (large) constant to be chosen later;
the values for these parameters are chosen so that the construction yields
an unbounded cluster. Let λ = λ(d) > 0 be another constant to be chosen
later, and let Π be a homogeneous Poisson process of intensity λ, and denote
its support [Π] = {x ∈ Rd : Π({x}) = 1}. We will construct a hard sphere

process Γ such that Γ̃ = Π.
Let H be the hexagonal lattice in R2, with edge-length 2. (Thus, the faces

are regular hexagons of side 2, and there are vertices at the origin 0 = (0, 0)
and at (2, 0), say.) Let H∗ be the graph formed from H by adding an extra
vertex in the middle of each edge; see Figure 1. We will call the vertices
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Figure 2: An example of the construction in dimension d = 3. Shown are
the cells centred at the origin 0 and at the three neighbouring bond-vertices
u, v, w, together with two touching balls B(x0, r0) and B(xu, ru).

of the original lattice H site vertices and the extra vertices of H∗ bond
vertices. Also fix some arbitrary well-ordering of the vertex set V (H∗) of
H∗.

Fix the dimension d ≥ 3. For any vertex v ∈ V (H∗), define the cell
centred at v to be the set

W (v) := B2(v, ε) × Bd−2(0, C) ⊂ Rd.

See Figure 2.
First, here is a brief description of the construction. We will attempt to

place spheres with their centres in distinct cells in such a way that spheres
at adjacent cells touch; see Figure 2. All the spheres will have radii in
[µ− δ, µ + δ]. Note that any two non-adjacent vertices of H∗ are at distance
at least

√
3. Since 2(µ+ δ + ε) = 1.72 <

√
3, it will be impossible for spheres

centred in non-adjacent cells to touch or overlap.
We will explore the lattice iteratively starting from the origin, attempting

to construct an unbounded cluster. Each step of this exploration will have
two parts. Firstly, for some vertex w ∈ V (H∗) we try to find a point yw ∈
[Π] ∩ W (w) such that it is possible to place a sphere of some radius rw ∈
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[µ − δ, µ + δ] at yw that touches one of the existing spheres and does not
overlap any of the existing spheres. Secondly, we check to see whether or
not there are any other points of the Poisson process within B(yw, rw). If
there is none, the construction succeeds and we let xw = yw. As a notational
convenience we introduce an extra element ∆ 6∈ Rd to denote “failure”. If
either part of the above construction fails, we let xw = ∆.

At each step of the construction, each vertex v ∈ V (H∗) will be either
good (meaning we succeeded in constructing a sphere B(xv, rv) at v), bad
(meaning the construction failed), or unexplored.

Using H∗ (instead of H, say) will enable us to explore in such a way that
every time we explore a new vertex it is adjacent to exactly one good vertex
and no bad vertices. This will simplify our arguments. Other choices of
lattice are possible, such as the square lattice in place of H – see the remark
at the end of Section 3.

Here is a formal description of the construction. As remarked earlier, we
will try to construct a cluster in each of a set of two-dimensional “layers”.

First Layer

Start with all vertices in V (H∗) unexplored. We perform a sequence of steps
0, 1, 2, . . .. One new vertex (or sometimes two) will be explored at each step.

Step 0

Let w0 = 0; we will start the exploration at the site vertex w0. Temporarily
denote its cell W = W (w0). Consider two cases:

Case 1 : If W ∩ [Π] = ∅, then let x0 = y0 = ∆.

Case 2 : If W ∩ [Π] 6= ∅, then pick y0 uniformly at random from the set
W ∩ [Π] (conditional on W ∩ [Π]). Take r0 = µ. Now take

x0 =

{
y0 if B(y0, r0) ∩ [Π] = {y0};
∆ if B(y0, r0) ∩ [Π] ) {y0}.

Declare w0 = 0 to be bad if x0 = ∆, and good otherwise.

Step n (n ≥ 1)

Step n consists of parts (a)–(c).
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(a) We first choose an unexplored vertex wn to explore, according to the
following rules.

(i) If there is an unexplored site vertex w adjacent to some good bond
vertex and two unexplored bond vertices, choose wn to be the first
such w in the ordering on V (H∗).

(ii) If there is no w as in (i), but there is an unexplored bond vertex
w adjacent to a good site vertex and an unexplored site vertex,
choose wn to be the first such w.

(iii) If neither (i) nor (ii) hold then stop, and proceed to ‘Subsequent
Layers’ below.

(b) Temporarily write w = wn for the vertex chosen in (a). The rules in (a)
ensure that w is unexplored, and it has exactly one good neighbour, v
say, while all the other neighbours of w are unexplored. We will try to
construct xw ∈ W (w), the centre of a sphere tangent to B(xv, rv).

Define
U(v) = B(xv, rv + µ + δ) \ B(xv, rv + µ − δ);

this is the set of possible centres for a sphere of radius ∈ [µ − δ, µ + δ]
that touches B(xv, rv). Let

S = W (w) ∩ U(v).

Now consider two cases:

Case 1 : If S ∩ [Π] = ∅, then let xw = yw = ∆.

Case 2 : If S ∩ [Π] 6= ∅, then pick yw uniformly at random from S ∩ [Π]
(conditional on S ∩ [Π]), and let

rw = ρ(xv, yw) − rv

(by the definition of V (v) we have rw ∈ [µ − δ, µ + δ]). Now
take

xw =

{
yw if B(yw, rw) ∩ [Π] = {yw};
∆ if B(yw, rw) ∩ [Π] ) {yw}.

(c) Declare the vertex w to be bad if xw = ∆, and good otherwise.

In addition, if w is a bond vertex and is declared bad, then declare its
remaining unexplored site vertex neighbour to be bad also.

Continue either for an infinite sequence of steps, or until we stop in
(a)(iii) above.
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Subsequent Layers

All the points xw constructed above (for good vertices w) lie in the “layer”
R2 × Bd−2(0, C), and the radii rw are at most µ + δ. We want to repeat
the construction in other layers, ensuring that the spheres in different layers
do not overlap. Therefore let L = 2(C + µ + δ + 1), and consider the lat-
tice of points LZd−2 ⊂ Rd−2. For each z ∈ LZd−2, repeat the “first layer”
construction above, but now in the layer R2 ×Bd−2(z, C) (using the Poisson
points in cells of the form B2(v, ε)×Bd−2(z, C)). This results in independent
identically distributed clusters in each of the layers.

Definition of Γ

Finally, construct the hard sphere process Γ by placing a sphere centred at
xw with radius rw, for each good vertex w, in every layer. Also place a sphere
of radius zero centred at each remaining Poisson point z ∈ [Π].

3 Proof of Construction

In this section we prove Theorem 2, using the construction of Section 2. We
start by assembling some tools.

Percolation

Let H be the hexagonal lattice in R2 with side-length 2. Consider Bernoulli
site percolation with parameter p on H. That is, each vertex is open with
probability p and closed otherwise, independently for different vertices. There
exists a critical probability pc = psite

c (H) ∈ (0, 1), with the property that if
p > pc there is a unique infinite connected cluster of open vertices, while if
p < pc there is no infinite cluster (see [3]). It is proved in [10] that

pc < 0.794.

Now suppose p > pc and let K ⊂ R2 be the vertex set of the infinite
open cluster if it contains 0, and let K = ∅ otherwise. Suppose d ≥ 3 and
let (Kz)z∈Zd−2 be a family of i.i.d. random sets each with the same law as K.
Fix any L > 0, and define the random set

Y =
⋃

z∈Zd−2

Kz × {Lz} ⊂ Rd.

8



Recall the definitions of lower intensity D and a-neighbourhood from the
introduction.

Lemma 3 For p > psite
c (H) and any L > 0, the set Y defined above satisfies

D(Y {a}) → 1 as a → ∞.

Proof. Let I be the infinite open cluster, and let θ = P(0 ∈ I) > 0.

Define a random set K̂ as follows. Flip a θ-coin independently of I, and
let K̂ = I with probability θ, and K̂ = ∅ with probability 1 − θ. By the
Harris-FKG inequality (see for example [3]) we see that K stochastically

dominates K̂. Now let (K̂z)z∈Zd−2 be a family of i.i.d. random sets with the

same law as K̂, and let Ŷ =
⋃

z∈Zd−2 K̂z × {Lz} ⊂ Rd. Then Y dominates

Ŷ , so D(Y {a}) ≥ D(Ŷ {a}), and it suffices to prove D(Ŷ {a}) → 1. By Fubini’s
theorem,

E
L

(
Ŷ {a} ∩ B(0, r)

)

LB(0, r)
=

1

LB(0, r)

∫

B(0,r)

P
(
x ∈ Ŷ {a}

)
dL(x)

≥ inf
x∈Rd

P
(
x ∈ Ŷ {a}

)
for all r.

But the random set Ŷ {a} is invariant in law under isometries of H×Zd−2, so
P(x ∈ Ŷ {a}) is a periodic function of x, and

inf
x∈Rd

P
(
x ∈ Ŷ {a}

)
= inf

x∈Rd

P
(
B(x, a) ∩ Ŷ 6= ∅

)
→ P

(
Ŷ 6= ∅

)
= 1 as a → ∞.

Hence D(Ŷ {a}) → 1 as required. �

Random points

Let Π be a point process in Rd, and recall that [Π] denotes its support. For
r > 0 we call a point x ∈ [Π] r-isolated if there is no other point of [Π]
within distance r of x.

Lemma 4 Let Π be a homogeneous Poisson point process of intensity λ in
Rd. Let S ⊆ Rd be a Borel set with LS ∈ (0,∞). Let X be a point cho-
sen uniformly at random from the set [Π] ∩ S (provided it is non-empty),
conditional on Π. Then

P
(
X exists and is r-isolated

)
≥ e−λLB(0,r) − e−λLS.
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Lemma 5 Under the assumptions of Lemma 4, let Z ⊆ Rd be disjoint from
S. Then

P
(
X exists and is r-isolated

∣∣ Π(Z) = 0
)
≥ P

(
X exists and is r-isolated

)
.

Proof of Lemma 4. For convenience, let X = ∆ if Π(S) = 0, and declare
∆ to be not r-isolated. Denote the random sets B = B(X, r), U = B ∩ S,
and V = B \ S. Then we have

P(X is r-isolated | Π(S), X)

= P
(
Π(U) = 1, Π(V ) = 0 | Π(S), X

)
1[Π(S) > 0]

=

(
1 − LU

LS

)Π(S)−1

e−λLV 1[Π(S) > 0].

Hence

P(X is r-isolated) = EP(X is r-isolated | Π(S), X)

= E

∞∑

k=1

(
1 − LU

LS

)k−1

e−λLV e−λLS (λLS)k

k!

= E

[(
1 − LU

LS

)−1

e−λLV −λLS
(
eλLS−λLU − 1

)
]

= E

[(
1 − LU

LS

)−1(
e−λLB − e−λLV −λLS

)
]

≥ e−λLB − e−λLS .

�

Let Π|S denote Π restricted to S; that is the point process with support
[Π] ∩ S.

Proof of Lemma 5. We have almost surely

P
(
X is r-isolated, Π(Z) = 0

∣∣ Π|S, X
)

= 1
[
Π(B(X, r) ∩ S) = 1

]
P

(
Π(B(X, r) \ S) = 0, Π(Z) = 0

∣∣ X
)

≥ 1
[
Π(B(X, r) ∩ S) = 1

]
P

(
Π(B(X, r) \ S) = 0

∣∣ X
)
P

(
Π(Z) = 0

∣∣ X
)

= P
(
X is r-isolated

∣∣ Π|S, X
)
P

(
Π(Z) = 0

)
.
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(To check the above inequality note that Π|SC is independent of X, and
use the elementary property of the Poisson process that {Π(A) = 0} and
{Π(B) = 0} are positively correlated.) Taking expectations yields the result.
�

Volume bound

We write ωd := LBd(0, 1) for the volume of the unit ball. Fix d ≥ 3 and
ε, C > 0. Suppose w, w′ ∈ R2 are such that ρ(w, w′) = 1. Define the sets

W = B2(w, ε) × Bd−2(0, C) and W ′ = B2(w
′, ε) × Bd−2(0, C).

Lemma 6 Fix µ = 0.75, δ = 0.1 and ε = 0.01. Let d ≥ 11. Let W, W ′ be as
above. There exists C ′ = C ′(d) such that if C ≥ C ′, then for all x ∈ W and
r ∈ [µ − δ, µ + δ], writing

S = W ′ ∩
(
B(x, r + µ + δ) \ B(x, r + µ − δ)

)
,

we have

LS ≥ ω2ωd−2ε
2

3

(
1.2

d−2

2 − 1
)

.

In order to prove Lemma 6, we use some further geometric results.

Lemma 7 Fix d and R+ ∈ (0,∞). There exists C ′ = C ′(d, R+) such that if
C ≥ C ′, for all x ∈ B(0, C) and R ≤ R+ we have

L
(
B(0, C) ∩ B(x, R)

)
≥ 1

3
L

(
B(x, R)

)
.

Proof. First suppose that ρ(0, x) = C (so that x is on the surface of the
ball B(0, C)). Let

f(C, R) =
L(B(0, C) ∩ B(x, R))

L(B(x, R))
,

and note that f depends only on the ratio R/C, while for fixed R, the
function f is increasing and continuous in C, and converges to 1/2 as C → ∞
(since near x, the ball B(0, C) approaches a half space). Therefore by the
intermediate value theorem the claimed result holds for the case ρ(0, x) = C.

Suppose now that ρ(0, x) < C. The result is trivial when B(x, R) ⊆
B(0, C). If not we can replace B(0, C) with B(0, Ĉ), where ρ(0, x) = Ĉ (and

so Ĉ ∈ [C − R+, C)), and appeal to the case already proved. �
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Lemma 8 Let µ, δ, ε and W, W ′ be as in Lemma 6. There exists C ′(d) < ∞
such that if C ≥ C ′, then for all x ∈ W and R ∈ [2(µ− δ), 2(µ + δ)] we have

1

3
ω2ωd−2ε

2Rd−2
1 ≤ L

(
W ′ ∩ B(x, R)

)
≤ ω2ωd−2ε

2Rd−2
2 ,

where R1 =
√

R2 − (1 + 2ε)2 and R2 =
√

R2 − (1 − 2ε)2.

Proof. For z = (z1, z2, . . . zd) ∈ Rd we write z = (z1, z2) and z =
(z3, z4, . . . zd), and we write ρ and ρ for Euclidean distances on R2 and Rd−2

respectively.
We claim that for any x ∈ W ,

B2(w
′, ε) ×

[
Bd−2(0, C) ∩ Bd−2(x, R1)

]

⊆ W ′ ∩ B(x, R) ⊆
B2(w

′, ε) ×
[
Bd−2(0, C) ∩ Bd−2(x, R2)

]
.

To prove this, first note that for x ∈ B2(w, ε) and z ∈ B2(w
′, ε), we have

ρ(w, w′) − ρ(z, w′) − ρ(x, w) ≤ ρ(z, x) ≤ ρ(z, w′) + ρ(w, w′) + ρ(w′, x),

which gives
1 − 2ε ≤ ρ(z, x) ≤ 1 + 2ε.

Take any z ∈ W ′ ∩ B(x, R). Then z ∈ B2(w
′, ε) and x ∈ B2(w, ε). Since

z ∈ B(x, R), we have

ρ(z, x) ≤
√

R2 − ρ(z, x)2 ≤
√

R2 − (1 − 2ε)2 = R2;

that is z ∈ Bd−2(x, R2). The second inclusion of the claim follows.
On the other hand, if z ∈ B2(w

′, ε) × (Bd−2(0, C) ∩ Bd−2(x, R1)), then
ρ(z, x) ≤ 1+2ε and ρ(z, x) ≤ R1. This gives ρ(z, x) ≤ R, so z ∈ W ′∩B(x, R).
Thus the first inclusion of the claim is proved.

The required statement now follows from the claim. For the lower bound
we use Lemma 7, noting that

R1 ∈
[√

4(µ − δ)2 − (1 + 2ε)2 ,
√

4(µ + δ)2 − (1 + 2ε)2
]
⊂ (0,∞).

For the upper bound we discard the intersection with Bd−2(0, C). �
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Proof of Lemma 6. We have

LS = L
(
W ′ ∩ B(x, r + µ + δ)

)
− L

(
W ′ ∩ B(x, r + µ − δ)

)
.

Therefore, choosing C ′ according to Lemma 8, for C ≥ C ′ we have by that
lemma,

LS ≥ ω2ωd−2ε
2
[
rd−2/3 − rd−2

]
,

where r :=
√

(r + µ + δ)2 − (1 + 2ε)2 and r :=
√

(r + µ − δ)2 − (1 − 2ε)2.
For C chosen as above, we want to find a uniform lower bound on LS for all
possible r ∈ [µ − δ, µ + δ]. We claim that for d ≥ 11, the function

g(r) := rd−2/3 − rd−2

is increasing on r ∈ [µ − δ, µ + δ]. Once this is proved we obtain

g(r) ≥ g(µ − δ) ≥ (
√

1.2)d−2/3 − (
√

0.73)11−2 ≥ 1
3

(
1.2

d−2

2 − 1
)

on this interval, and the result follows.
To prove the above claim note that

g′(r) =
d − 2

3

[
(r + µ + δ)rd−4 − 3(r + µ − δ)rd−4

]
,

so it is enough to check that

(
r2

r2

) d−4

2

> 3

for the required values of r and d. But is is straightforward to check that
the quadratic function r2 − 1.4r2 is positive for r ∈ [µ − δ, µ + δ], hence

r2/r2 > 1.4; and we have 1.4
11−4

2 > 3. �

Proof of Theorem 2

Proof of Theorem 2. Let d ≥ 45, and construct the hard sphere process
Γ as in Section 2, where the constant C is chosen according to Lemma 6, and
the intensity λ of the Poisson process will be chosen later.

Consider the first layer of the construction, and recall that at step n,
vertex wn is explored, and a sphere of radius rwn

is placed with centre xwn
=
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ywn
∈ W (wn), provided the vertex is found to be good. As a notational

convenience, if the algorithm stops during step N we write wn = ∆ for all
n ≥ N , and call ∆ a good vertex. Let Fn be the σ-algebra generated by all
of the random variables(

wi, ywi
, xwi

, rwi
, Π|W (wi), Π|B(xwi

,rwi
)

)
i=0,...,n

;

that is “the information known up to and including step n”. Let F−1 be the
trivial σ-algebra.

We will compare the set of good vertices with a percolation cluster. Sup-
pose that for some q we can show that for all n ≥ 0,

P(wn is good | Fn−1) ≥ q almost surely (1)

(that is, each newly explored vertex is good with probability at least q uni-
formly in the past). Then the random set of good site vertices stochastically
dominates CH

q2(0), the open cluster at the origin for site percolation with

parameter q2 on H. This is because, as long as it is possible to add a new
site vertex to the cluster of good site vertices at the origin, the algorithm
attempts to do so by first exploring the intervening bond vertex, and then
immediately exploring the new site vertex. The probability that both steps
succeed is at least q2. Therefore we can compare with a cluster-growing
algorithm for CH

q2(0).
Also recall that the construction gives, in each layer, a cluster of touching

spheres (with radii ∈ [µ − δ, µ + δ]) including a sphere with its centre in
the cell of each good vertex. Note therefore that if J is such a cluster of
spheres then J{C+ε} contains all good vertices. Therefore, since the layers of
the construction are independent, if we can establish (1) with q2 > psite

c (H)
then the statements of the theorem will follow by Lemma 3. Thus all that
remains is to prove (1) for with q ≥ 0.892 >

√
0.794 ≥

√
psite

c (H).
Recall that in step n of the construction we choose a random Poisson point

y = ywn
(if any exists) in a certain Fn−1-measurable random set S (which

is a.s. congruent to some set S as in Lemma 6), and check to see whether a
certain ball B(y, rwn

) is free of other Poisson points. If both steps succeed
then the vertex is declared good. The radius rwn

depends on which point
y is chosen, but since it can be at most µ + δ we can bound the required
probability by the probability that the larger ball B(y, µ + δ) contains no
other points:

P(wn is good | Fn−1) ≥ P
(
y 6= ∆, and y is (µ + δ)-isolated

∣∣ Fn−1

)
.
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The latter event depends on Π only through its restriction to W (wn)
{µ+δ}.

The conditioning on Fn−1 does not affect the process Π|W (wn), while the fact
that one vertex vn adjacent to wn is good tells us only that a certain Fn−1-
measurable set Z not intersecting S contains no points of Π. (Recall that
2(µ+δ+ε) <

√
3, so the conditioning on non-adjacent vertices has no effect).

Thus we deduce by Lemmas 5 and 4 that

P(wn is good | Fn−1) ≥ e−λLB(0,µ+δ) − e−λLS

≥ 1 − λLB(0, µ + δ) − e−λLS.

But Lemma 6 applies to give

LS ≥ ω2ωd−2ε
2

3

(
1.2

d−2

2 − 1
)

almost surely.
Thus, we require that

F (λ) := 1 − λB − e−λA ≥ 0.892,

where

A :=
ω2ωd−210−4

3

(
1.2

d−2

2 − 1
)

and B := ωd0.85d.

For each d we can choose the intensity λ so as to get the best bound. Differ-
entiating shows that F has a maximum at

λ∗ = λ∗(d) =
1

A
log

A

B
,

at which

F (λ∗) = 1 − log (A/B) + 1

A/B
.

But ω2 = π and ωd−2

ωd

= d
2π

(see for example [9]), therefore

A

B
=

10−4d
(
1.2

d−2

2 − 1
)

6 × 0.85d
.

Thus A/B is an increasing function of d, and it is easy to check that for d ≥ 31
we have A/B > 1, and therefore λ∗ is positive (which is a requirement for an
intensity). Furthermore, F (λ∗) is an increasing function of A/B for A/B > 1,
and therefore an increasing function of d ≥ 31. Finally it is straightforward
to check that F (λ∗(d)) > 0.892 for d ≥ 45, as required. �
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Remark – choice of lattice. Our construction could be adapted to work
for other two-dimensional lattices such as the square lattice in place of the
hexagonal lattice, but at the expense of increasing the dimension d. The
fundamental requirement is that the diagonals (that is, the distances between
non-adjacent vertices of the lattice) must be greater than 2/

√
3 times the edge

length. This allows the set S (in which we try to find a possible centre for
a sphere) to be made much larger in volume than the hard spheres (which
must be empty of other Poisson points), while preventing overlap between
non-adjacent spheres.

4 Stationarization

In this section we deduce Theorem 1 from Theorem 2.

Proof of Theorem 1. For each positive integer n, let Un be a random
variable uniformly distributed on B(0, n), and independent of Γ. Define
the randomly shifted process Γn = Γ + Un. Clearly Γn is a percolating
Poisson hard sphere process, and has no spheres larger than K. We shall
use Prohorov’s Theorem to construct Λ as a weak limit of the sequence (Γn),
and show that it has all the required properties.

We claim that the sequence of random variables (Γn) is tight in the weak
topology induced by the vague topology on point measures on Rd × [0,∞).
To check this, it is enough to show that the sequence (Γn(A)) is tight for any
relatively compact Borel A ∈ Rd × [0,∞). (See [7] Lemma 16.15). Any such
A is a subset of B× [0,∞) for some bounded Borel B ⊆ Rd, and we have a.s.
Γn(A) ≤ Γn(B×[0, K]) since Γn has no spheres larger than K. But the latter
quantity has the same (Poisson) distribution for each n, so the sequence is
clearly tight as required.

Now let Λ be any weak subsequential limit of (Γn), so

Γnk
⇒ Λ as k → ∞ (2)

in the topology referred to above. Clearly Λ is integer-valued and thus a
sphere process. Furthermore, it is easily seen that the set of hard sphere
processes supported a.s. on Rd × [0, K] is weak closed, and therefore Λ is a
hard sphere process supported on Rd × [0, K]. Let B ⊆ Rd be a bounded
Borel set with L-null boundary. By Theorem 16.16 of [7], the convergence in
(2) implies the convergence in distribution Γnk

(B × [0, K]) → Λ(B × [0, K]).
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Hence the latter has Poisson distribution with mean LB and so Λ is a Poisson
sphere process.

Next we check that Λ is invariant. It is sufficient to show that for any
z ∈ Rd and any continuous, compactly-supported function f : Rd × [0,∞) →
[0, 1] we have E

∫
f dΛ = E

∫
f d(Λ + z). Fix f and z. Note that Γn and

Γn + z are obtained by shifting Γ by an independent random variable that
is respectively uniform on B(0, n) and on B(z, n). Therefore they may be
coupled so as to be equal on the event that the shift lies in B(0, n)∩B(z, n).
Write α = α(n) = L[B(0, n) \ B(z, n)]/LB(0, n) and note α → 0 as n → ∞.
For any Poisson sphere process Υ, E

∫
fdΥ is bounded by the Lebesgue

measure of the projection onto Rd of the support of f , say C. Thus

∣∣E
∫

f dΓn − E
∫

f d(Γn + z)
∣∣ ≤ (1 − α)0 + αC → 0 as n → ∞.

Taking limits along (nk) we deduce from (2) that E
∫

f dΛ = E
∫

f d(Λ + z)
as required.

Finally we must show that Λ percolates almost surely. For a hard sphere
process Υ and for 0 < a < b let Ha,b(Υ) be the event that G(Υ) has a
connected set of spheres with radii at most K which intersects both B(0, a)
and B(0, b)C . Also let Ha,∞(Υ) be the event that G(Υ) has an unbounded
connected set of spheres with radii at most K which intersects B(0, a). Note
that Ha,∞(Υ) is the decreasing limit of the events Ha,b(Υ) as b → ∞. Also
denote by I(Υ) the union of all infinite clusters of the hard sphere process
Υ. Recalling the definition of Γn above, we have

P(Ha,b(Γn)) ≥ P(Ha,∞(Γn)) = P(0 ∈ I(Γ){a}) = E
L(I(Γ){a} ∩ B(0, n))

LB(0, n)
.

Hence by the definition of lower intensity,

lim inf
n→∞

P(Ha,b(Γn)) ≥ D(I(Γ){a}).

Note that the event Ha,b(Υ) depends only on the process Υ restricted to the
compact set B(0, b + K) × [0, K]. Furthermore it is straightforward to see
that the event is closed in the vague topology on point measures. It follows
from (2) and the Portmanteau Theorem ([7] Theorem 4.25) that

P(Ha,b(Λ)) ≥ lim sup
k→∞

P(Ha,b(Γnk
)).
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From the last two inequalities we have

P(Ha,b(Λ)) ≥ D(I(Γ){a}),

and hence letting b → ∞ we deduce

P(Λ percolates) ≥ P(Ha,∞(Λ)) ≥ D(I(Γ){a}).

Finally letting a → ∞, Theorem 2 gives P(Λ percolates) = 1. �

Remark – positive radii. As noted earlier, our proof may be adapted
so that all the spheres have positive radii. To achieve this, take a small
parameter η > 0, and modify the construction in Section 2 as follows: having
chosen a potential centre yw for a sphere, we declare the vertex good only if
the larger ball B(yw, rw + η) contains no other Poisson points (rather than
the ball B(yw, rw)). If η is small enough then this does not affect the later
computations, and we still obtain a non-invariant percolating hard sphere
process Γ for d ≥ 45. But now Γ has the additional property that no zero-
radius sphere is within distance η of any nonzero-radius sphere. Therefore
the stationarized version Λ will inherit the same property. Finally, we modify
Λ as follows. If there is a zero-radius sphere centred at z, replace it with a
sphere of radius r, where r is 1/2 of the distance from z to the closest other
sphere of Λ (including other zero-radius spheres). This r is always positive
because the radii of the existing spheres are uniformly bounded above, and
any bounded region of Rd contains only finitely many Poisson points.

Open Problems

(i) Does there exist a percolating Poisson hard sphere process (invariant
or non-invariant) in dimensions 2 ≤ d ≤ 44? The case d = 2 seems
particularly interesting. Does there exist dc such that a percolating
process is possible if and only if d ≥ dc?

(ii) In any dimension, does there exist a percolating, invariant Poisson hard
sphere process which is a deterministic function of the Poisson process?

(iii) Do percolating hard sphere processes exist for other point processes,
such as Gaussian zeros processes [8].

18



Acknowledgements

We thank Yuval Peres for drawing our attention to the problem. Codina
Cotar thanks her postdoctoral advisor David Brydges for support and assis-
tance.

References

[1] Daley, D. J., Last, G., Descending chains, the lilypond model, and
mutual-nearest-neighbour matching, Adv. in Appl. Probab., 37 (2005),
no. 3, 604-628.

[2] Gillett, A., Nuyens, M., A near neighbour continuum percolation model,
preprint (2006), arxiv:math.PR/0611315.

[3] Grimmett, G. Percolation, Second Edition, Springer (1999).
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