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Abstract

We study the topology of doubly-infinite paths in the bond per-
colation model on the three-dimensional cubic lattice. We propose a
natural definition of a knotted doubly-infinite path. We prove the ex-
istence of a critical probability py satisfying p. < pr < 1 (where p, is
the usual percolation critical probability), such that for p. < p < py,
all doubly-infinite open paths are knotted, while for p > p; there are
unknotted doubly-infinite paths.

1 Introduction

Knotting of random paths has important applications in polymer science, and
has been extensively studied. Previous work has involved knotting probabil-
ities of finite self-avoiding walks and polygons, chosen according to various
random mechanisms. For details, and for information on the physical appli-
cations, the reader is referred to the articles in [10], for example. For more
information on knot theory see [9].

Here we consider a closely related problem. In the percolation model,
edges of the infinite three-dimensional cubic lattice are declared open with
probability p, or closed with probability 1 — p, independently for different
edges. (For more details of percolation see [2]). We consider the question:
when do there exist open knotted or unknotted doubly-infinite paths?
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Figure 1: This path is unknotted.

As in the case of entanglement (see [3],[5],[6],[8]) it is not immediately
obvious how to give a ‘correct’ definition of a knotted doubly-infinite path.
The situation is complicated by the possibility that a path may ‘double back’
to untie a potential knot, as in Figure 1. We shall not pursue the question
of possible definitions in detail; instead we shall give one natural definition,
noting that there may be others.

Standard results imply that when p is greater than the percolation critical
probability p., there exist open doubly-infinite paths. We shall prove that
for p sufficiently close to p. all such paths are knotted, while for p sufficiently
close to 1 there are unknotted doubly-infinite paths.

2 Notation and Results

We start with some definitions. The three-dimensional cubic lattice is the
graph with vertex set Z3 and edge set

L={{z,y} CZ°: |z —yll =1}

where || - — - || denotes Euclidean distance. The origin is the vertex O =
(0,0,0) € Z3. In the bond percolation model with parameter p, each edge in
L is declared open with probability p, and closed otherwise, independently for
different edges. More formally, we consider the product probability measure
P, on the probability space {0,1}". An element w of the probability space
is called a configuration, and an edge e € L is said to be open if w(e) =1



and closed if w(e) = 0. We write W = W (w) for the random set of all open
edges.

A finite path is a non-empty set of edges of the form {{zo, 1}, {1, 22}, ...,
{z,_1,2.}}, and a doubly-infinite path is a set of edges of the form {...,
{z_1, 20}, {x0, 21}, {21, 22}, ...}, where in both cases the z; are pairwise dis-
tinct vertices. A subpath is a subset of a path which is itself a path.

Percolation theory is concerned with the existence of infinite connected
components. We define

8(p) = P,(W has an infinite connected component containing O)

and

pe = sup{p: 6(p) = 0}.
It is known (by the results in [4], for example) that for all p > p. there
exist doubly-infinite open paths almost surely. For more information on
percolation see [2].

Our aim here is to study knotting of paths, and for this we require the
following topological definitions. A ball B is a subset of R® which is homeo-
morphic to {x € R? : ||z]| < 1}, and the boundary OB of a ball is the image
of {x € R® : ||z|| = 1} under such a homeomorphism. Similarly an arc «
is a subset of R* homeomorphic to [—1,1] x {0}?, and da is the image of
{-1,1} x {0}?. The following definitions relating to ball-arc pairs are stan-
dard; for more details see [9]. A ball-arc pair is a pair (B, «), where B is a
ball and « is an arc, such that « C B and a N 0B = 0da. Two ball-arc pairs
(B,«a) and (B', o) are equivalent if there is a homeomorphism from B to B’
which maps a to /. A ball-arc pair is said to be unknotted if it is equivalent
to the ball-arc pair ([—1,1]3,[—1,1] x {0}?), and knotted otherwise. (Note
that any arc forms an unknotted ball-arc pair with some ball; see [9] for more
details).

For an edge e = {z,y} € L. we denote by [e] the closed line segment

€] = a4+ (1—Ny:Aeo,1]} CR.

For a set of edges G we write [G] = Ueegle] € R®. By a block we mean a
ball of the form [a, b] X [¢, d] X [e, f], where a, ..., f are integers. Let F be a
finite path. We say F is neat if there exists a block B such that (B, [F]) is an
unknotted ball-arc pair. We say that a doubly-infinite path G is unknotted if
every finite subpath of G is a subpath of some neat finite subpath of G, and
knotted otherwise.



We now define
k(p) = P,(there is an open unknotted doubly-infinite path containing O).

It is easy to see that  is an increasing function, so we define

pr = sup{p : k(p) = 0}.

Theorem. We have
Pe < pp < 1.

It follows from the theorem that if p. < p < pg, then every doubly-infinite
path is knotted almost surely.

3 Proof of Theorem

We begin with the latter inequality of the theorem. We say that a doubly-
infinite path {...,{z_1,20},{z0,21},...} is oriented if (z,41); > (z;); for
all 4 and each j = 1,2,3, where (z;); denotes the j-coordinate of the 3-
vector x;. Standard results imply that for p sufficiently close to unity, O is
contained in an open oriented doubly-infinite path with positive probability
(see [2], Section 12.8). The inequality py < 1 therefore follows from the
observation (which we justify below) that every oriented doubly-infinite path
is unknotted.

To justify the claim above, note that it is sufficient to prove that any finite
subpath of an oriented doubly-infinite path is neat. Let F' = {{z¢,z1},...,
{z,_1,2,}} be such a path. Clearly we may find a block B such that (B, [F])
is a ball-arc pair (we start with the block having opposite corners z, and
z,, and then enlarge it to ensure that [F| N 0B = O0[F| = {x¢,z,}). For
z € R? define ¢p(z) = z1 + 22 + 23. Note that @(x;) is strictly monotonic in
i, increasing (or decreasing) by 1 as i increased by 1. Let L be the straight
line segment joining zo and z,. It is straightforward to show that (B, [F])
is equivalent to (B, L); there is a suitable piecewise-linear homeomorphism
which preserves ¢(z) for all z € B, and is the identity on 0B. It is now easily
seen (by applying a further homeomorphism) that (B, L) is an unknotted
ball-arc pair, and hence (B, [F]]) is also.

We now turn to the former inequality of the theorem. Let C' = [0,4] x
[0,5] x [0,4], let H be the set of all edges of I having both vertices in C,
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Figure 2: The path K. The ends of the path lie on the boundary of the block
C, while all the other vertices lie in its interior.

and let K be the subset of H illustrated in Figure 2 (the outline of C' is also
illustrated). Standard tools of knot theory may be used to show that (C, [K])
is a knotted ball-arc pair (for example, using the Jones polynomial, see [9]).
We define a ‘diminishment’ of W as follows. Given w, define

W'=W\ U &+

z€Z3:
WnN(H+z)=K+z

that is, W' is obtained from W by deleting translated copies of Figure 2
wherever they occur.

The following is a consequence of a slight modification of results in [1].
There exists an interval [p;, po] where p; < po such that for p € [py, ps] we
have

P,(W has an infinite connected component) = 1 (1)

but
P,(W' has an infinite connected component) = 0. (2)

The main result in [1] is for ‘enhancements’ — systematic alterations involving
the addition of edges, whereas the construction of W' is a ‘diminishment’
involving removal of edges. The necessary modifications to the proof in [1]
are straightforward. A diminishment was also used in [7]; see also [2], p. 65.
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Now, (1) implies that p. < p;. And (2) implies that, P,-a.s. for p € [py, ps],
W' contains no unknotted doubly-infinite path. We shall show that this in
turn implies that W has no unknotted doubly-infinite path, and therefore
p2 < pg, establishing the required inequality.

We must show that there exists no w for which W contains an unknotted
doubly-infinite path but W’ does not. Suppose on the contrary that for some
w, U is an unknotted doubly-infinite path which is a subset of W but not of
W'. Clearly, U must have a subpath of the form K + x, and without loss of
generality we may assume that x = O, so that K C U and WNH = K. Since
U is unknotted, K must lie in a neat subpath of U, so consider a block B
and a finite path L satisfying K C L C U such that (B, [L]) is an unknotted
ball-arc pair. We shall use standard tools from knot theory to show that this
is impossible; detailed justification of some of the steps may be found in [9)].
First add a ‘point at infinity’ to R?® making it into a 3-sphere. For any ball
A, we write A for the closure of its complement in R® U {oo}; this is also a
ball. Now, since K C L, it may be seen by inspecting Figure 2 that we must
have H C B. We may find an arc 8 € B such that 88 = 9[L] and (B, B) is
an unknotted ball-arc pair. It follows that 8 U [L] is an unknotted loop (see
[9] for a definition). We can consider S U[L] as the union of the arcs [K] and
BUIL\ KJ; but (H,[K]) is a knotted ball-arc pair, and (H, 8 U[L \ K]) is
a ball-arc pair (because L N H = K). This contradicts a standard theorem
which states that no knot has an additive inverse (Corollary 2.5 in [9]).
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