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Abstract

In the modified bootstrap percolation model, sites in the cube
{1, . . . , L}d are initially declared active independently with probability
p. At subsequent steps, an inactive site becomes active if it has at
least one active nearest neighbour in each of the d dimensions, while
an active site remains active forever. We study the probability that
the entire cube is eventually active. For all d ≥ 2 we prove that as
L → ∞ and p → 0 simultaneously, this probability converges to 1 if
L ≥ exp · · · exp λ+ε

p , and converges to 0 if L ≤ exp · · · exp λ−ε
p , for any

ε > 0. Here the exponential function is iterated d − 1 times, and the
threshold λ equals π2/6 for all d.
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1 Introduction

Let Zd := {x = (x1, . . . , xd) : x ∈ Z} be the d-dimensional integer lattice. We
call the elements of Zd sites. Let e1 := (1, 0, . . . , 0), . . . , ed := (0, . . . , 0, 1) ∈
Zd be the standard basic vectors. For a set of sites W ⊆ Zd, define

β(W ) := W ∪
{

x ∈ Zd : ∀i = 1, . . . , d we have x + ei ∈ W or x− ei ∈ W
}

,

and
〈W 〉 := lim

t→∞
βt(W ),

where βt denotes the t-th iterate of the function β. 〈W 〉 is the final active set
for the modified bootstrap percolation model starting with W active.

Now fix p ∈ (0, 1) and let X be a random subset of Zd in which each
site is independently included with probability p. More formally, denote by
Pp = P the product probability measure with parameter p on the product

σ-algebra of {0, 1}Zd

, and define the random variable X by X(ω) := {x ∈
Zd : ω(x) = 1} for ω ∈ {0, 1}Zd

. A site x ∈ Zd is said to be occupied if
x ∈ X.

We say that a set W ⊆ Zd is internally spanned, or i.s., if 〈X∩W 〉 = W
(that is, if the model restricted to W fills W up). For a positive integer L
we define the d-dimensional cube of side L to be

Qd(L) := {1, . . . , L}d.
For convenience we also write Qd(L) = Qd(bLc) when L is not an integer.
We define

Id(L) = Id(L, p) := Pp

(

Qd(L) is internally spanned
)

.

Let expn denote the n-th iterate of the exponential function.

Theorem 1 Let d ≥ 2 and ε > 0. For the modified bootstrap percolation
model, as L→∞ and p→ 0 simultaneously we have

(i) Id(L, p)→ 1 if L ≥ expd−1 λ + ε

p
;

(ii) Id(L, p)→ 0 if L ≤ expd−1 λ− ε

p
;

where

λ =
π2

6
.
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Remarks

The case d = 2 of Theorem 1 was proved in [8]. The modified bootstrap
percolation model considered here is a minor variant of the standard boot-

strap percolation model, which is defined in the same way except replacing
the function β with

β ′(W ) := W ∪
{

x ∈ Zd : #{y ∈ W : ‖y − x‖1 = 1} ≥ d
}

,

(so a site becomes active if it has at least d active neighbours). In the case
d = 2, the analogue of Theorem 1 was proved for the standard bootstrap
percolation model in [8]; in this case the threshold λ becomes π2/18. Similar
results were obtained for a further family of two-dimensional models in [9].
The present work is the first proof of the existence of a sharp threshold λ
for a bootstrap percolation model in 3 or more dimensions; in addition we
determine the value π2/6. The analogue of Theorem 1 but with two different
constants c1, c2 in place of λ + ε, λ− ε was proved earlier in [2] (d = 2), [4]
(d = 3) and [5] (d ≥ 4). These works apply to the standard model (among
others), but can easily be adapted to the modified model considered here. It
is a fascinating open problem to prove the existence of a sharp threshold for
the standard model in 3 or more dimensions.

In [3] a different kind of “sharpness” is proved, by a general method,
for various models including standard and modified bootstrap percolation:
writing pα = pα(L) for the value such that I(L, pα) = α, then p1−ε − pε =
o(p1/2) as L → ∞, with a certain explicit bound. (However this result says
nothing about the behaviour of p1/2 as a function of L). Similar results with
the roles of p and L exchanged may be obtained using the methods of [2].

There have been numerous other beautiful rigorous contributions to the
study of bootstrap percolation models, initiated by [11]. For example see the
references in [5],[8].

Bootstrap percolation models have important applications, both directly
and as tools in the study of more complicated systems (see for example the
references in [5],[8]). The models have been extensively studied via simula-
tion, and it is a remarkable fact that the resulting asymptotic predictions
often differ greatly from rigorous asymptotic results, apparently because the
convergence as (L, p) → (∞, 0) is extremely slow. See [10],[8] for examples.
In the case of the modified bootstrap percolation model in d = 2, the value
0.47±0.02 for λ was predicted numerically in [1], whereas the rigorous result
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from [8] is λ = π2/6 = 1.644934 · · · . It would be worthwhile to compare
simulations with our rigorous result that λ = π2/6 for d ≥ 3. It is of interest
to understand this slow convergence phenomenon in more detail, and it is
relevant to applications: a typical physical system might have Ld ≈ 1020

particles, which is much larger than current computer simulations allow, but
potentially not large enough to exhibit a threshold close to the limiting value.
See [6] for an interesting partly non-rigorous investigation of some these is-
sues.

Proof outline

The proof of Theorem 1 is by induction on the dimension. The base case
d = 2 is provided by the results in [8]. (The proof in [8] is quite involved, and
very specific to the 2-dimensional model). It is interesting that the constant
λ = π2/6 enters only here. The inductive step follows closely the pioneering
work of [4],[5], although since our result is more precise we need to be more
careful with the estimates. As in [5], the case d = 3 is the most delicate.

The proof of the lower bound in Theorem 1(i) is relatively straightfor-
ward, and many of the ideas were already present in [10]. The fundamental
observation is that if a cube is already entirely active, then the sites lying
on its faces evolve according to the modified bootstrap percolation model in
d − 1 dimensions. Hence, by the inductive hypothesis, a cube of size L is
likely to be internally spanned if it contains some internally spanned cube
of size m = expd−2 λ+ε

p
(sometimes called a “critical droplet” or “nucleation

centre”), because such a cube will grow forever from its faces. For d ≥ 3,
straightforward arguments show that such a cube is internally spanned with
probability at least (roughly) e−m, and so in order to internally span the
larger cube we should take approximately L > 1/(e−m) = expd−1 λ+ε

p
, com-

pleting the induction.
The proof of the upper bound in Theorem 1(ii) is more challenging, and

is based on the more subtle construction originating in [4]. The idea is to find
an upper bound on the probability that a cube of size m = expd−2 λ−ε

p
has a

left-right crossing in its final configuration. (Such a crossing plays the role of
a nucleation centre in this bound). The proof proceeds by dividing this cube
into “slices”, and running the (d− 1)-dimensional model in each, to produce
a configuration which dominates the d-dimensional model. By the inductive
hypothesis, the probability that a slice becomes fully active is small, and,
where a slice does not become fully active, its final configuration resembles
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subcritical percolation. Hence a connection of length m has probability at
most (roughly) e−m, and again we can complete the induction. A key point in
the present proof is that for the modified model, we can use slices of thickness
1, whereas in [4],[5] (for the standard model) it was necessary to use slices
of thickness 2, and to replace the parameter p with 2p. Changing p in this
way makes it impossible to obtain matching upper and lower bounds, and
it is for this reason that our method cannot be adapted directly to prove
an analogous result for the standard bootstrap percolation model. Another
difference in the proof here as compared with [4],[5] is that (in the case d = 3)
we need to carefully balance the probabilities of fully active slices with those
of percolation connections. Equation (24) is the heart of this calculation.

Notation and conventions

It will be convenient to consider lower-dimensional versions of the model
running on subsets Zd. Let δ ∈ {1, . . . , d}. We define the δ-dimensional cube

Qδ(L) := {1, . . . , L}δ × {0}d−δ ⊆ Zd.

By a copy of Qδ(L) we mean an image of Qδ(L) under any isometry of
Zd. For a set W ⊆ Zd, which will always be a subset of some copy of a
δ-dimensional cube, we define

βδ(W ) := W ∪
{

x ∈ Zd : #
{

i : {x + ei, x− ei} ∩W 6= ∅
}

≥ δ
}

,

and 〈W 〉δ := limt→∞ βt
δ(W ). We say that W is δ-internally-spanned if

〈X ∩ W 〉δ = W . Let Iδ(L) := Pp(Q
δ(L) is δ-i.s.), and note that this is

consistent with the earlier definition.
Theorem 1 involves an asymptotic statement as p→ 0 with d and ε fixed.

Many of the inequalities used in the proof will be valid “for p sufficiently
small”, be which we mean for all p less than some q = q(d, ε) > 0, whose
value may vary from one instance to another. In some of following proofs we
use C1, C2, . . . to denote constants in (0,∞) which may depend on d and ε,
but not on p.

5



2 Lower Bound

Lemma 2 For any d ≥ 3 and for r, ε > 0, if p is sufficiently small (depending
on d, r, ε) then

Id

(

expd−2 r

p

)

≥ 1/ expd−1 r + ε

p
.

Proof. If d ≥ 4, note that a cube is internally spanned if all of its sites
are occupied. Therefore

Id

(

expd−2 r

p

)

≥ p

[

expd−2(r/p)
]d

≥ 1/ expd−1 r + ε

p

for p sufficiently small. (To check the second inequality, take three successive
logarithms of the reciprocal of both sides).

The case d = 3 is a little more delicate. Write L = ber/pc and k = bp−3c
(so k � L for p sufficiently small). Let A be the event that every site
having two of its coordinates in {1, . . . , k} and one coordinate in {1, . . . , L}
is occupied (see Figure 1). Let B be the event that every copy of Q1(k) in
Q3(L) contains at least one occupied site. It is straightforward to check that
if A and B both occur then Q3(L) is internally spanned. Since A and B are
increasing events, the Harris-FKG inequality (see e.g. [7]) yields

I3(L) ≥ P(A)P(B).

We now estimate

P(A) ≥ p3Lk2 ≥ 1/ exp2 r + ε

p

for p sufficiently small (to check the second inequality, take two logarithms
of the reciprocals), while

P(B) ≥ 1− 3L3(1− p)k ≥ 1− 3 exp(br/pc − bp−2c) ≥ e−1

for p sufficiently small. Therefore we have

I3(L) ≥ 1/ exp2 r + 2ε

p

for p sufficiently small, and since ε was arbitrary this proves the result for
d = 3. �
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Figure 1: The occupied set in event A.

The following result from [2] states that Id(L) increases rapidly with L
once it is large enough.

Lemma 3 For each d ≥ 1 there exist c = c(d) < 1 and C = C(d) <∞ such
that provided Id(`) ≥ c, we have for all L ≥ ` that

Id(L) ≥ 1− Ce−L/`.

Proof. See [2],[10] or [5]. The idea is to divide Qd(L) into disjoint or
nearly-disjoint copies of Qd(`). If Qd(L) is not i.s. then it is crossed by a path
of non-i.s. copies of Qd(`). The probability of this event can be estimated
using standard percolation methods. �

Proof of Theorem 1(i). First note that it is enough to prove the
required statement if L → ∞ and p → 0 with L = expd−1 λ+ε

p
. For then if

L ≥ expd−1 λ+ε
p

, we may take p′ ≤ p such that L = expd−1 λ+ε
p′

, and since

Id(L, p) is monotone in p we have Id(L, p) ≥ Id(L, p′)→ 1.
The proof is by induction on d. The required statement holds in the case

d = 2 by Theorems 4 and 1(i) of [8]. Now let d ≥ 3, and suppose that for all
δ = 2, . . . , d− 1 we have

for every ε > 0, Iδ
(

expδ−1 λ + ε

p
, p
)

→ 1 as p→ 0. (4)

We shall deduce that (4) holds for δ = d also.
Fix ε > 0. We first claim that

Id
(

expd−2 p−2
)

≥ 1/ expd−1 λ + 4ε

p
(5)

for p sufficiently small. To prove this, write

` =
⌊

expd−2 λ + ε

p

⌋

; a =
⌊

expd−2 λ + 2ε

p

⌋

; b =
⌊

expd−2 p−2
⌋

.
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By Lemma 2 we have

Id(a) ≥ 1/ expd−1 λ + 3ε

p
. (6)

We will deduce the claimed lower bound on Id(b) using the fact that an inter-
nally spanned cube will grow if each of its faces (of all possible dimensions)
is internally spanned in the model of the appropriate lower dimension.

More precisely, for L ≥ 1 and a proper subset S ( {1, . . . , d}, define the
face

FS(L) :=
{

x ∈ Zd : xi ∈ [1, L] ∀ i ∈ S, and xi = L + 1 ∀ i /∈ S
}

.

Thus FS(L) is a copy of Q|S|(L), and we have the disjoint union

Qd(L + 1) = Qd(L) t
⊔

S({1,...,d}

FS(L).

It is straightforward to check that if Qd(L) is d-i.s. and the face FS(L) is
|S|-i.s. for every S ( {1, . . . , d} then Qd(L + 1) is d-i.s. Hence we have

Id(b) ≥ Id(a) P(Gb
a), (7)

where Gb
a is the event that FS(j) is |S|-i.s. for every j ∈ [a, b) and every

S ( {1, . . . , d}.
In order to bound P(Gb

a), first note that we may take p sufficiently small
that

Iδ(`) ≥ c(δ) for all δ ∈ [1, d− 1], (8)

where c(δ) is as in Lemma 3. (The case δ = d− 1 follows directly from (4);
the cases δ ∈ [2, d−2] follow from (4) by an additional application of Lemma
3; the case δ = 1 is trivial.) Therefore writing C ′ = maxδ∈[1,d−1] C(δ), Lemma
3 yields

P(Gb
a) ≥ 1− 2dC ′

b−1
∑

j=a

e−j/` ≥ 1− 2d+1C ′`e−a/` ≥ e−1

for p sufficiently small. Combining this with (6),(7) proves the claim (5).
Now write

L =
⌊

expd−1 λ + 5ε

p

⌋

.
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Let E be the event that Qd(L) contains some d-i.s. copy of Qd(b), and let F
be the event that for each δ ∈ [1, d− 1], every copy of Qδ(b) in Qd(L) is δ-i.s.
It is straightforward to check that if E and F both occur then Qd(L) is d-i.s.
Hence by the Harris-FKG inequality,

Id(L) ≥ P(E) P(F ). (9)

By tiling Qd(L) with disjoint copies of Qd(b), we have

P(E) ≥ 1−
(

1− Id(b)
)bL/bcd

≥ 1− exp
[

− Id(b)(L/b)d
]

But by (5), for p sufficiently small we have

Id(b)(L/b)d ≥ Id(b)L/b ≥

⌊

expd−1 λ+5ε
p

⌋

expd−1 λ+4ε
p

expd−2 p−2
≥ expd−1 λ + 4.9ε

p
→∞

as p→ 0, hence P(E)→ 1.
On the other hand, again taking for p sufficiently small to satisfy (8), we

have by Lemma 3,
P(F ) ≥ 1− 2dLdC ′e−b/`.

But we have

log(Lde−b/`) ≤ d expd−2 λ + 5ε

p
− bexpd−2 p−2c

expd−2 λ+ε
p

≤ − expd−2(p−2/2)

for p sufficiently small. Hence P(F )→ 1 as p→ 0.
Thus by (9) we have proved that Id(expd−1 λ+5ε

p
) → 1 as p → 0. Since ε

was arbitrary this is (4) with δ = d, and the induction is complete. �

3 Upper Bound

The main step in the proof of Theorem 1(ii) will be Theorem 10 below, which
states that within a cube of appropriate size, the final configuration of the
model resembles highly subcritical percolation.

We call a set of sites W ⊆ Zd connected if it induces a connected graph
in the nearest-neighbour hypercubic lattice. A component is a maximal
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connected subset. For sites x, y ∈ Zd and a (random) set W ⊆ Zd we write

“x
W←→ y” for the event that W has a component containing x and y. (Note

that x
W←→ x is equivalent to x ∈ W ). For sites x, y ∈ Qd(m), we define

f d
m(x, y) = f d

m(x, y, p) := Pp

(

x
〈X∩Qd(m)〉←→ y

)

.

Theorem 10 Let d ≥ 3 and ε > 0. Let

m =

⌊

expd−2 λ− ε

p

⌋

,

where λ = π2/6. There exist γ = γ(d, ε) > 0 and q = q(d, ε) > 0 such that
for all p < q and all x, y ∈ Qd(m),

f d
m(x, y) ≤ pγ(‖x−y‖∞+1).

The “+1” term in the exponent is important, since for the induction we need
a bound which is o(1) as p→ 0 even in the case x = y.

The following result from [2] is very useful. The diameter of a set W ⊆
Zd is diam W := supx,y∈W ‖x− y‖∞.

Lemma 11 If S ⊆ Zd is connected and internally spanned then for every
real a ∈ [1, diamS] there exists a connected, internally spanned set T ⊆ S
with diam T ∈ [a, 2a].

Proof. See [2],[8] or [5]. The idea is to realize the bootstrap percolation
model by an iterative algorithm. We keep track of a collection of disjoint
connected i.s. sets Sj. At each step, if there is a site in 〈∪jSj〉 \ ∪jSj then
we unite it with at most d of the sets to form a new set. In the case of the
modified model, maxj(diam Sj) is at most doubled at each step. �

Proof of Theorem 1(ii). As in part (i), by monotonicity of Id we may
assume that L = expd−1 λ−ε

p
. The case d = 2 was proved in [8]. Therefore fix

d ≥ 3 and ε > 0, and let

L =
⌊

expd−1 λ− ε

p

⌋

and m =
⌊

expd−2 λ− ε

p

⌋

.

By Lemma 11, if Qd(L) is internally spanned then it contains some connected
internally spanned set T with diam T ∈ [m/2, m]. This implies that there
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exist v ∈ {0, . . . , L−m}d and x, y ∈ v+Qd(m) ⊂ Qd(L) with ‖x−y‖∞ ≥ m/2

such that x

〈

X∩(v+Qd(m))
〉

←→ y. Hence by Theorem 10 we obtain

Id(L) ≤ Ldmdmdpγ(m/2+1) ≤ 1/ expd−1 λ− ε

p
→ 0 as p→ 0 (12)

as required. Here Ldmdmd is a bound on the number of choices for v, x, y, and
the second inequality holds for p sufficiently small, by taking the logarithm
thus:

log
(

Ldm2dpγ(m/2+1)
)

≤
(

d− γ

2
log

1

p

)

expd−2 λ− ε

p
+ 2d expd−3 λ− ε

p

≤ (−1) expd−2 λ− ε

p
.

�

The proof of Theorem 10 is by induction on the dimension. The key
estimate is Lemma 13 below, for which we need to define two more quantities.
Let

χd
n = χd

n(p) :=
∑

y∈Qd(2n+1)

f d
2n+1(z, y)

where z := (n + 1, . . . , n + 1) is the site at the centre of Qd(2n + 1). (Thus
χd

n is the expected volume of the component at z in the final configuration
of the model on Qd(2n + 1)). For n ≤ m define

F d
m,n = F d

m,n(p) := Pp

(

〈X ∩Qd(m)〉 has a component of diameter ≥ n
)

.

Lemma 13 For any n ≤ m and x, y ∈ Qd(m) with ` = ‖x− y‖∞ we have

f d
m(x, y) ≤

∑̀

k=0

∑

0<i1<···<ik<ik+1=`+1
(

H(i1+1) +
m
∑

a=0

F d−1
m,n

[

1∧md−1H(i1+a)
]

)

k
∏

j=1

F d−1
m,n

[

1 ∧md−1H(ik+1 − ik)
]

where

H(r) :=
1

2

∞
∑

s=r−1

(

2χd−1
n

)s
.
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(Perhaps the easiest way to understand Lemma 13 is to read the proof as far
as (14),(15), and look at Figures 2,3.)

Proof. The following construction is based on that of [4],[5]. Without
loss of generality suppose that ‖x − y‖∞ = (y)d − (x)d; if not we reorder
the coordinates and/or reverse the direction of the dth coordinate. Write
(x)d = u and (y)d = u + `. Divide the cube Qd(m) into the slices

Tj := Qd−1(m) + (0, . . . , 0, j + u), j = −u + 1, . . . , m− u,

so that x ∈ T0 and y ∈ T`. Let Yj := 〈X ∩ Tj〉d−1 be the final configuration
of the (d− 1)-dimensional model restricted to Tj. Let

Zj :=

{

Tj if Yj has a component of diameter ≥ n;
Yj otherwise.

In the former case we say that the slice Tj is full. Now let

Z :=
m−u
⋃

j=−u+1

Zj.

The point of this construction is that Z ⊇ 〈X∩Qd(m)〉d. To see this note
that Zj ⊇ Yj ⊇ 〈X∩Qd(m)〉d∩Tj; the latter inclusion holds because running
the (d−1)-dimensional model in Tj is equivalent to running the d-dimensional
model with the boundary condition that every site in Qd(m) \Tj is occupied
– hence it must result in a larger configuration in Tj than running the d-
dimensional model in Qd(m). (Note that the argument would not work in
this form for the standard bootstrap percolation model, since the boundary
condition adds two extra neighbours to each site in the slice.) Therefore

f d
m(x, y) ≤ P

(

x
Z←→ y

)

.

We shall bound the above probability by splitting the event up according
to which slices are full. Let I1 < · · · < IK be the random indices of those
slices among T1, . . . , T` that are full. Also let W be the event than every
path in Z from x to y intersects some full slice among T−u, . . . , T0, and let
−A be the index of the last full slice among T−u, . . . , T0 (or A = ∞ if there
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Figure 2: Two possibilities for the connection from x to y (black dots).
Vertical bars indicate full slices. In the left picture W does not occur; in the
right picture it does.

is none). Then

f d
m(x, y) ≤

∑̀

k=0

∑

0<i1<···<ik<`+1

∑

a=0,...,m,∞
[

P
(

x
Z←→ y, (I1, . . . , IK) = (i1, . . . , ik), A = a, WC

)

(14)

+ P
(

x
Z←→ y, (I1, . . . , IK) = (i1, . . . , ik), A = a, W

)

]

. (15)

(See Figure 2 for an illustration).
Using independence of the slices, the probability (15) above is at most

P
(

T−a is full
)

P
(

E(−a + 1, i1 − 1)
)

×
k
∏

j=1

P
(

Tij is full
)

P
(

E(ij + 1, ij+1 − 1)
)

, (16)

where we have written for convenience ik+1 := ` + 1, and where

E(i, i′) :=

{

Ti, . . . , Ti′ are not full, and v

Si′

j=i Zj←→ v′ for some v ∈ Ti, v′ ∈ Ti′

}

(and taking E(i, i′) to be an event of probability 1 if i > i′).
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Similarly, the probability (14) is at most

P
(

G(x,−a + 1, i1 − 1) ∩ {A = a}
)

×
k
∏

j=1

P
(

Tij is full
)

P
(

E(ij + 1, ij+1 − 1)
)

, (17)

where

G(x, i, i′) :=

{

Ti, . . . , Ti′ are not full, and x

Si′

j=i Zj←→ v′ for some v′ ∈ Ti′

}

.

Next we bound the factors in (16),(17). For any slice Tj we have

P(Tj is full) = F d−1
m,n , (18)

so it remains only to bound the probabilities of E(i, i′) and G(x, i, i′).
Suppose that the event E(i, i′) occurs. Then there is a self-avoiding

nearest-neighbour path in
⋃i′

j=i Zj from some site in Ti to some site in Ti′ .
Given such a path, we say that there is a changeover whenever two consecu-
tive sites in the path lie in different slices. Let α be such a path chosen so that
the number of changeovers is a minimum. Define sites v1, w1, v2, w2, . . . , ws

along the path α as follows (see Figure 3 for an illustration). Let v1 ∈ Ti be
the first site of α. Given v1, . . . , vt, let vt+1 be the first site after vt at which
the path enters a slice different from that of vt. Iterate this until when we
reach a site vs ∈ Ti′. Let wt be the site preceding vt+1 in α for each t < s,
and let ws ∈ Ti′ be the last site of α. Thus α consists of a sequence of s
sub-paths (v1, . . . , w1), . . . , (vs, . . . , ws), each one lying entirely within one
slice, and with a changeover occurring between each sub-path and the next.
(Note that two non-consecutive sub-paths may lie in the same slice). More
precisely we have the following facts.

For each t = 1, . . . , s:

(i) vt, wt ∈ Tj(t) for some j(t) ∈ [i, i′], with j(1) = i and j(s) = i′;

(ii) |j(t)− j(t + 1)| = 1 and ‖wt − vt+1‖1 = 1 for t < s;

(iii) ‖vt − wt‖∞ ≤ n;

(iv) the component of Zj(t) at vt has diameter ≤ n;

(v) vt

Zj(t)←→ wt occurs;

(vi) vt

Zj(t)←→ vt′ does not occur for any t′ 6= t.

14
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Figure 3: An illustration of the event E(i, i′) – there is a path connecting the
two full slices. The sites v1, w1, v2, w2, . . . are shown as black dots in order
along the path from left to right. In this example v3 = w3, while v4, v6 lie in
the same slice, but (necessarily) in distinct components within the slice.

Properties (iii),(iv) hold because the slices Ti, . . . , Ti′ are not full, and prop-
erty (vi) holds because of the minimality assumption on α.

The occurrence of E(i, i′) implies the existence of v1, . . . , ws satisfying the
above properties. For v, w ∈ Tj define the event

{

v
≤n←→ w

}

:=
{

there exists a connected, (d− 1)-internally-spanned set

S ⊆ Tj with diamS ≤ n and v, w ∈ S
}

.

(The definition of this event is delicate, and corrects a small error in [5]).
Then we have

P
(

E(i, i′)
)

≤
∑

s≥i′−i+1

∑

v1,...,ws

P
(

{v1
≤n←→ w1} ◦ · · · ◦ {vs

≤n←→ ws}
)

≤
∑

s≥i′−i+1

∑

v1,...,ws

P
(

v1
≤n←→ w1

)

· · ·P
(

vs
≤n←→ ws

)

(19)

Here the second sum is over all possible choices of v1, w1, v2, . . . , ws satisfying
properties (i)–(iii) above, the symbol ◦ denotes disjoint occurrence (which
holds because of property (vi)), and the second inequality follows from the
Van den Berg-Kesten inequality (see e.g. [7]).

In order to bound the above, consider choosing v1, w1, v2, . . . , ws in order.
There are #Ti = md−1 possible choices for v1. Once vt is chosen, the possible

15



choices for wt lie in the cube

V (vt) := vt − z + Qd−1(2n + 1)

centred at vt, where z := (n + 1, . . . , n + 1, 0). Furthermore the event
{

vt
≤n←→ wt

}

is contained in the event
{

vt
〈X∩V (vt)〉d−1←→ wt

}

. Once wt is
chosen, there are (at most) 2 possible choices for vt+1, corresponding to the
two neighbouring slices. Hence we obtain

∑

v1,...,ws

P(v1
≤n←→ w1) · · ·P(vs

≤n←→ ws)

≤ md−1

(

∑

w∈V (z)

f d−1
2n+1(z, w)

)s

2s−1

Substituting into (19) we obtain

P
(

E(i, i′)
)

≤ 1 ∧md−1H(i′ − i + 2), (20)

where H(r) is as in the statement of Lemma 13.
We use an almost identical argument to bound the probability of

G(x, i, i′). In this case the path starts at the fixed site x, so there is no
need for the factor md−1. We obtain

∑

a

P
(

G(x,−a + 1, i− 1) ∩ {A = a}
)

≤ H(i + 1). (21)

Finally, substituting (18),(20),(21) into (16),(17), and substituting these
into (14),(15) we obtain the conclusion of Lemma 13. �

In the following proofs we use C1, C2, . . . to denote constants in (0,∞)
which may depend on d and ε, but not on p.

Proof of Theorem 10 (case d = 3). Let d = 3 and fix ε > 0. Since ε
is arbitrary we can take for convenience

m =
⌊

exp
λ− 2ε

p

⌋

.

We shall bound f 3
m(x, y) using Lemma 13; for this we need to choose n and

find upper bounds on F 2
m,n and χ2

n.

16



We first consider F 2
m,n. If 〈X∩Q2(m)〉2 has a component of diameter ≥ n

then by Lemma 11, Q2(m) contains a connected, 2-i.s. set T with diameter in
[n/2, n]. By Theorems 4 and 2(ii) of [8] we may find B = B(ε) ∈ (0,∞) such
that I2(B/p) ≤ 1/ exp 2λ−ε

p
for p sufficiently small (note that the factor of 2 in

the exponent is important). Indeed, by equation (11) in [8] and the proof of
Theorem 1(ii) in [8], we can choose B sufficiently large that, for p sufficiently
small, for any connected T ⊂ Z2 with diam T ∈

[

bB/(2p)c, bB/pc
]

we have

P(T is 2-i.s.) ≤ 1/ exp
2λ− 2ε

p
.

Therefore let

n =
⌊B

p

⌋

.

Then by the above remarks we have

F 2
m,n ≤ m2n2/ exp

2λ− 2ε

p

≤
(

B

p

)2

exp
2λ− 4ε− 2λ + 2ε

p

≤ exp − ε

p
(22)

for p sufficiently small.
We now turn to χ2

n, which is the expected volume of the component at
(n + 1, n + 1) in 〈X ∩ Q2(2n + 1)〉2. This component is a rectangle, R say.
R is 2-i.s., and #R ≤ (diamR)2. We bound χ2

n = Ep#R by considering two
cases. If 1 ≤ diam R ≤ 10, then some site within distance 10 of z must be
occupied. If diam R > 10 then by Lemma 11, Q2(2n + 1) must contain some
2-i.s. rectangle S with diameter in [5, 10]; and a 2-i.s. rectangle has at least
one occupied site in each row and each column. Hence we have

χ2
n ≤ 102(212p) + (2n + 1)2[(2n + 1)2102](10p)5

≤ C1p ≤
√

p, (23)

for p sufficiently small. (Here (2n + 1)2102 is a bound on the number of
possible choices for the rectangle S, (10p)5 is a bound on the probability S
is internally spanned, and we have used the definition of n for the second
inequality).
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Now we use (22),(23) to bound the terms in Lemma 13. We have for p
sufficiently small

H(r) ≤ 1

2

∞
∑

s=r−1

(2
√

p)s ≤ (2
√

p)r−1

2(1− 2
√

p)
≤ pC2(r−1).

Writing C = C2 we now bound the following expression from Lemma 13 by
considering two possible cases for the value of r:

F 2
m,n[1 ∧m2H(r)] ≤ e−ε/p

[

1 ∧ e2λ/p pC(r−1)
]

≤











e−ε/p ≤ p e−ε/(2p) ≤ p p[ εC
8λ

(r − 1)] if pC(r−1) ≥ e−4λ/p

p
[

e2λ/p pC(r−1)/2 pC(r−1)/2
]

≤ p pC(r−1)/2 if pC(r−1) < e−4λ/p

≤ pC3r (24)

for p sufficiently small. Looking again at Lemma 13 we therefore have

H(i1 + 1) +
∞
∑

a=0

F 2
m,n

[

1 ∧m2H(i1 + a)
]

≤ pC2i1 + C4p
C3i1 ≤ pC5i1 (25)

for p sufficiently small, where we can drop the initial multiplicative constant
because i1 ≥ 1. Finally, substituting (24),(25) into Lemma 13 we obtain for
p sufficiently small

f 3
m(x, y) ≤

∑̀

k=0

∑

0<i1<···<ik<ik+1=`+1

pC5i1pC3(i2−i1) · · ·pC3(ik+1−ik)

≤ 2`pC5(`+1) ≤ pγ′(`+1)

for some γ′ = γ′(d, ε) > 0, as required. �

Proof of Theorem 10 (case d ≥ 4). The proof is by induction on
dimension. Fix d ≥ 4 and ε > 0 and suppose the case d− 1 is proved. Let

m =
⌊

expd−2 λ− ε

p

⌋

and n =
⌊ 1

2
expd−3 λ− ε

p

⌋

− 1,

so that the inductive hypothesis gives for x, y ∈ Qd−1(n) that f d−1
n (x, y) ≤

f d−1
2n+1(x, y) ≤ pγ(‖x−y‖∞+1).

18



We shall apply Lemma 13. If 〈X ∩ Qd−1(m)〉d−1 has a component of
diameter ≥ n then by Lemma 11, Qd−1(m) contains a connected, (d − 1)-
i.s. subset T with diameter in [n/2, n]. Hence by the inductive hypothesis
together with the reasoning used to obtain (12) in the proof of Theorem 1(ii),
we have

F d−1
m,n md−1 ≤ m2(d−1)n2(d−1)pγ(n/2+1) ≤ 1/ expd−2 λ− ε

p
≤ p

for p sufficiently small. (To check the second inequality, take the logarithm).
Using the inductive hypothesis again we have for p sufficiently small

χd−1
n ≤

n
∑

r=0

(2r + 1)d−1pγ(r+1) ≤ C6p
γ

(

1 +

∫ ∞

1

rd−1pγr dr

)

≤ pC7 ,

since for p sufficiently small, rd−1pγr is decreasing in r ≥ 1. So for p suffi-
ciently small we have

H(r) ≤ pC8(r−1) and F d−1
m,n

[

1 ∧md−1H(r)
]

≤ pC9r.

Hence, as in the case d = 3, substituting into Lemma 13 gives for p
sufficiently small

f d
m(x, y) ≤ 2`pC9(`+1) ≤ pγ′(`+1),

as required. �

Open Problems

(i) Prove the analogue of Theorem 1 for the standard bootstrap percolation
model in 3 or more dimensions. What is the value of the threshold λ
in this case?

(ii) Currently all proofs of the existence of a sharp threshold (in the sense of
Theorem 1 as opposed to [3]) for bootstrap percolation models involve
calculating its value. (See [8],[9] and the present work). Is there a
simpler method of proving existence without determining the value?

(iii) What is the “second order” asymptotic behaviour of the model? Specif-
ically, for example, if p = p1/2(L) is such that Id(L, p) = 1/2, what is

the asymptotic growth rate of p logd−1 L− λ as L→∞?
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