A NON-MEASURABLE SET FROM COIN-FLIPS

ALEXANDER E. HOLROYD AND TERRY SOO

To motivate the elaborate machinery of measure theory, it is desirable to have an example of a set which is not measurable in some natural space. The usual example is the *Vitali set*, obtained by picking one representative from each equivalence class of \mathbb{R} induced by the relation $x \sim y$ iff $x - y \in \mathbb{Q}$. The translation-invariance of Lebesgue measure implies that the resulting set is not Lebesgue-measurable [4]. By the Solovay Theorem [3], one cannot construct such a set in Zermelo-Frankel set theory without appealing to the axiom of choice. In this note we give a variant construction in the language of probability theory, using the axiom of choice in the guise of the well-ordering principle [5]. For other constructions see [2, Ch. 5].

Consider the measure space $(\Omega, \mathcal{F}, \mathbb{P})$, where $\Omega = \{0, 1\}^{\mathbb{Z}}$, and \mathcal{F} is the product σ -algebra, and \mathbb{P} is the product measure $(\frac{1}{2}\delta_0 + \frac{1}{2}\delta_1)^{\mathbb{Z}}$. This is the probability space for a sequence of independent fair coin flips indexed by \mathbb{Z} . It is well-known that $(\Omega, \mathcal{F}, \mathbb{P})$ is isomorphic up to null sets to Lebesgue measure on [0, 1), via binary expansion $[1, \mathbb{T}]$.

Theorem 1. There exists a set $S \subset \Omega$ which is not \mathcal{F} -measurable.

The **shift** T acts on integers via Tx := x+1, on configurations $\omega \in \Omega$ via $(T\omega)(x) := \omega(x-1)$ and on subsets of Ω via $T(E) := \{T\omega : \omega \in E\}$. We shall see that the set S is in fact not \mathcal{F}' -measurable in any $(\Omega, \mathcal{F}', \mathbb{P}')$ where $\mathcal{F}' \supseteq \mathcal{F}$ and \mathbb{P}' is shift-invariant and non-atomic.

Consider a function $X: \Omega \to \mathbb{Z} \cup \{\Delta\}$. We call X almost everywhere defined if $\mathbb{P}(X^{-1}\{\Delta\}) = 0$. We call X shift-equivariant if

$$X(T(\omega)) = T(X(\omega))$$
 for all $\omega \in \Omega$

(where $T(\Delta) := \Delta$). Theorem 1 is an immediate consequence of the following two facts.

Lemma 2. There does not exist an \mathcal{F} -measurable, a.e. defined, shift-equivariant function $X : \Omega \to \mathbb{Z} \cup \{\Delta\}$.

Lemma 3. There exists an a.e. defined, shift-equivariant function $X : \Omega \to \mathbb{Z} \cup \{\Delta\}$.

PROOF OF LEMMA 2. Suppose X is such a function. We adopt the usual probabilistic convention that $\{X \in A\}$ is shorthand for $\{\omega \in \Omega : X(\omega) \in A\}$. Since X is shift-equivariant and \mathbb{P} is shift-invariant (by uniqueness of extension [1, Lemma 1.17]) we have for each $x \in \mathbb{Z}$,

$$\mathbb{P}(X = x) = \mathbb{P}(T^{-x}\{X = 0\}) = \mathbb{P}(X = 0).$$

Hence

$$\mathbb{P}(X \neq \Delta) = \mathbb{P}\Big(\bigcup_{x \in \mathbb{Z}} \{X = x\}\Big) = \sum_{x \in \mathbb{Z}} \mathbb{P}(X = 0) = 0 \text{ or } \infty,$$

which contradicts $\mathbb{P}(X \neq \Delta) = 1$.

PROOF OF LEMMA 3. Say ω is **periodic** if $T^x\omega = \omega$ for some $x \in \mathbb{Z}$. If ω is not periodic then the configurations $(T^x\omega : x \in \mathbb{Z})$ are all distinct. Fix a well-ordering of Ω and define the function

$$X(\omega) := \begin{cases} \Delta & \text{if } \omega \text{ is periodic;} \\ \operatorname*{argmin}_{x \in \mathbb{Z}} T^{-x} \omega & \text{otherwise.} \end{cases}$$

(Recall that the argmin of a function is the argument at which its minimum is attained). We can think of $X(\omega)$ as the vantage point from which the configuration appears least. Then X is clearly shift-equivariant, and it is a.e. defined since there are only countably many periodic configurations.

References

- [1] O. Kallenberg. Foundations of Modern Probability. Springer, second edition, 2001.
- [2] J. C. Oxtoby. *Measure and category*, volume 2 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, second edition, 1980. A survey of the analogies between topological and measure spaces.
- [3] R. Solovay. A model of set theory in which every set of reals is Lebesgue measurable. Ann. Math., 92(1-56), 1970.
- [4] G. Vitali. Sul problema della misura dei gruppi di punti di una retta. Gamberini and Parmeggiani, Bologna, 1905.
- [5] E. Zermelo. Beweis, daß jede Menge wohlgeordnet werden kann. Math.~Ann.,~59(4):514-516,~1904.

E-mail address: holroyd@math.ubc.ca; tsoo@math.ubc.ca

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, 121 – 1984 MATHEMATICS RD, VANCOUVER, BC V6T 1Z2, CANADA.