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To motivate the elaborate machinery of measure theory, it is desir-
able to have an example of a set which is not measurable in some natu-
ral space. The usual example is the Vitali set, obtained by picking one
representative from each equivalence class of R induced by the relation
x ∼ y iff x − y ∈ Q. The translation-invariance of Lebesgue mea-
sure implies that the resulting set is not Lebesgue-measurable [4]. By
the Solovay Theorem [3], one cannot construct such a set in Zermelo-
Frankel set theory without appealing to the axiom of choice. In this
note we give a variant construction in the language of probability the-
ory, using the axiom of choice in the guise of the well-ordering principle
[5]. For other constructions see [2, Ch. 5].

Consider the measure space (Ω,F , P), where Ω = {0, 1}Z, and F
is the product σ-algebra, and P is the product measure ( 1

2
δ0 + 1

2
δ1)

Z.
This is the probability space for a sequence of independent fair coin
flips indexed by Z. It is well-known that (Ω,F , P) is isomorphic up
to null sets to Lebesgue measure on [0, 1), via binary expansion [1,
Theorem 3.19].

Theorem 1. There exists a set S ⊂ Ω which is not F-measurable.

The shift T acts on integers via Tx := x+1, on configurations ω ∈ Ω
via (Tω)(x) := ω(x−1) and on subsets of Ω via T (E) := {Tω : ω ∈ E}.
We shall see that the set S is in fact not F ′-measurable in any (Ω,F ′, P′)
where F ′ ⊇ F and P′ is shift-invariant and non-atomic.

Consider a function X : Ω → Z ∪ {∆}. We call X almost every-

where defined if P(X−1{∆}) = 0. We call X shift-equivariant

if

X(T (ω)) = T (X(ω)) for all ω ∈ Ω

(where T (∆) := ∆). Theorem 1 is an immediate consequence of the
following two facts.

Lemma 2. There does not exist an F-measurable, a.e. defined, shift-

equivariant function X : Ω → Z ∪ {∆}.

Lemma 3. There exists an a.e. defined, shift-equivariant function X :
Ω → Z ∪ {∆}.
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Proof of Lemma 2. Suppose X is such a function. We adopt the
usual probabilistic convention that {X ∈ A} is shorthand for {ω ∈ Ω :
X(ω) ∈ A}. Since X is shift-equivariant and P is shift-invariant (by
uniqueness of extension [1, Lemma 1.17]) we have for each x ∈ Z,

P(X = x) = P
(

T−x{X = 0}
)

= P(X = 0).

Hence

P(X 6= ∆) = P

(

⋃

x∈Z

{X = x}
)

=
∑

x∈Z

P(X = 0) = 0 or ∞,

which contradicts P(X 6= ∆) = 1. �

Proof of Lemma 3. Say ω is periodic if T xω = ω for some
x ∈ Z. If ω is not periodic then the configurations (T xω : x ∈ Z) are
all distinct. Fix a well-ordering of Ω and define the function

X(ω) :=







∆ if ω is periodic;

argmin
x∈Z

T−xω otherwise.

(Recall that the argmin of a function is the argument at which its
minimum is attained). We can think of X(ω) as the vantage point
from which the configuration appears least. Then X is clearly shift-
equivariant, and it is a.e. defined since there are only countably many
periodic configurations. �
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