PARTITION IDENTITIES AND THE COIN
EXCHANGE PROBLEM

ALEXANDER E. HOLROYD

ABSTRACT. The number of partitions of n into parts divisible by
a or b equals the number of partitions of n in which each part and
each difference of two parts is expressible as a non-negative integer
combination of a and b. This generalizes identities of MacMahon
and Andrews. The analogous identities for three or more integers
(in place of a,b) hold in certain cases.

1. INTRODUCTION

A partition of n is an unordered multiset of positive integers (called
parts) whose sum is n. For positive integers ay, ..., a, we denote the
set of non-negative integer combinations

S=58(al,...,an):= {Z:llx,-a,- ST, ..., Ty € NO},
where Ny := {0, 1,2,...}.

Theorem 1. For positive integers n, ay and ao, the following are all
EqUINUMETOUS!

(i) partitions of n in which each part and each difference between
two parts lies in S(ay,as);

(i1) partitions of n in which each part appears with multiplicity
lying in S(ay, asz);

(111) partitions of n in which each part is divisible by ay or as.

For example, when (n, a1, as) = (13,3, 4), the three sets of partitions
are: (i) {(13),(10,3),(7,3,3)}; (i) {(3,3,3,1,1,1,1)},(2,2,2,1,...,1),
(1,...,1)}; (i) {(9,4),(6,4,3),(4,3,3,3)}.

We also establish the following partial extension to three or more
integers ay, ..., a,. Let I and Ll denote greatest common divisor and
least common multiple respectively.
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Theorem 2. For any positive integers n and aq, ..., ay, the following
are eqUINUMeErous:

(i) partitions of n in which each part and each difference between
two parts lies in S(aq, ..., an);
(i1) partitions of n in which each part appears with multiplicity
lying in S(ai,...,an).

If ay,...,a,, can be ordered such that

Vi=2,...,m, 3j <1 such that (e M ---MNa;—1) Ua;, =a; Ua;. (*)

then in addition the following are equinumerous with (i) and (ii):

(111) partitions of n in which each part is divisible by some a;.

Note that (*) holds automatically when m = 2, so Theorem 1 is a
special case of Theorem 2.

2. REMARKS

To avoid uninteresting cases, aq, ..., a,, should be coprime, and none
should be a multiple of another. (Indeed, if the greatest common divisor

is ¢ > 1 then Theorem 2 reduces easily to the case (n',a},...,a,,) =

gt (n,a1,...,ay), while if a; is a multiple of a; then the statements of
the theorem are unchanged by removing a; from ay, ..., ay).

The set S is sometimes interpreted as describing sums of money that
can be formed using coins of given denominations. When a4, ..., a,, are
coprime, the complement S¢ := Ny \ S is finite; see e.g. [10]. The case
m = 2 was studied by Sylvester [11], who proved for a;, as coprime that
|SC| = 2(a1 — 1)(az — 1) and max S = (a; — 1)(as — 1) — 1. The case
m > 3 was proposed by Frobenius, and is much less well understood
in general. An exception is when aq, ..., a,, satisfy a certain condition
which is implied by our condition (*); see [9]. For more information
see [10].

When m = 2 we have for example S(2,3)¢ = {1}; S(3,4)¢ =
{1,2,5}; S(2,5)¢ = {1,3}; S(3,5)¢ = {1,2,4,7}; S(4,5)°¢ =
{1,2,3,6,7,11}. Larger sets {ay,...,a,} satisfying condition (*) in-
clude {4,6,9}; {6,8,9}; {6,9,10}; {p™ !, p™2q,...,q™ '} for p, q co-
prime; {7/p1,...,7/pm} for pi,...,p, pairwise coprime and 7w :=
[T, pi- We have for instance S(4,6,9)° = {1,2,3,5,7,11}.

In the case {a1,as2} = {2,3}, the equality between (i) and (iii) in
Theorem 1 gives the following partition identity due to MacMahon [8,
§299-300] (see also [3, p. 14, Examples 9-10]).

The number of partitions of n into parts not congruent
to £1 modulo 6 equals the number of partitions of n with
no consecutive integers and no ones as parts.
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The generalization to {ay,as} = {2,2r + 1}, r € Ny was proved (in
a form similar to that above) by Andrews [2]. The other cases of
Theorems 1 and 2 appear to be new. Other recent work related to
MacMahon’s identity appears in [1, 4, 7]. Somewhat similar identities
are proved in [5]. For more information on partitions and partition
identities see e.g. [3].

Finally we note that the second assertion in Theorem 2 cannot hold
for arbitrary aq,...,a, with m > 3. For example, it does not hold
for {ay,as,a3} = {2,3,5}: we have S(2,3,5) = 5(2,3), but allowing
multiples of 5 in addition to multiples of 2 and 3 clearly increases the
number of partitions of type (iii) for some n.

3. PROOFS

As remarked above, Theorem 1 is the m = 2 case of Theorem 2. We
will prove the two assertions of Theorem 2 separately. The proofs are
simpler when m = 2, and the reader may find it helpful to bear this
case in mind throughout.

Proof of Theorem 2 (first equality). Fix aq, ..., an, and let F,, and M,
be the sets of partitions in (i) and (ii) respectively. We will show that

For a partition A = (Ay,..., ;) (where n = > . A\; and Ay > -+ >
Ar), the conjugate partition \' = (\|,...,\,) is defined as usual by
r" = A and A, = max{j : A\; > i}. Since the set S is closed under
addition, the condition that A\ has all parts and differences between
parts in S is equivalent to the condition that each adjacent pair in
the sequence A1, \o, ..., A, 0 differs by an element of S. On the other
hand, it is readily seen that the latter condition is equivalent to the
condition that X" has all multiplicities in S (indeed this holds for any
set S). Hence conjugation is a bijection between F, and M,,. U

Our proof of the second assertion in Theorem 2 relies on the two
simple lemmas below. Given integers ay, ..., a,, we write

Ei = ((11 I—]"'|_|(Ii_1) L a;.

Lemma 3. Ifa;...,a, satisfy condition (*) then we have the formal
power series identity

k_ HZZ2(1 - qzi)
Z q H;Zl(l — )

In the case when m = 2 and ay, ay are coprime, the above expression
has the appealing form (1 — ¢®®)(1 — ¢*)~*(1 — ¢®)~!, as noted in

keS(ai,....,am)
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[12]. Expressions for the left side for m = 3 and arbitrary ay, as, as, are
derived in [6, 12].

Proof of Lemma 3. We use induction on m. When m = 1 we have

1
DA =gt =
1 —q»
keS(a1)
as required.
For m > 2, clearly any k € S(ay,...,a,) can be expressed as

k = za, + v, where z € Ny and y € S(ay,...,am-1). (1)

We claim that under condition (*), each such k has a wunique such
representation subject to the additional constraint

T <Ly /. (2)

Once this is proved we obtain

Z qk _ (1 + qam + q2@m B qém_am) Z qk

keS(a1,....am) keS(ar,....,am—1)
By the inductive hypothesis this equals
g T175 - ")
L=g L (L —go)
which is the required expression.

To check the above claim, let j = j(m) be as in condition (*), and
write d = a; M- - -May,_1, so that £, = dUa,, = a;Ua,. Now note that
any representation k = xa,, + y as in (1) that violates (2) may be re-
expressed as k = (x — ¥y, /am)am+ (y+ L), where z—4,, /a,, € Ny, and
y+ Ly € S(ai, ..., am-1) (since £, is a multiple of a;). By repeatedly
applying this we can reduce x until (2) is satisfied, as required. To check
uniqueness, note that all elements of S(as,...,a,_1) are divisible by
d, while the ¢,,/a,, quantities 0, G, 20, ..., ly — an, are all distinct
modulo d (since ¢,, = d U a,,). Hence we see that no two distinct
expressions za,, + y satisfying (1),(2) can be equal. O

Let 1[] denote an indicator function and let | denote “divides”.

Lemma 4. Ifa;...,a, satisfy condition (*) then for any positive in-
teger k,
1[a,|k for some 7] = 1[a;|k] —Zl[&-\k].
i=1 i=2

When m = 2 and aq, as are coprime, the lemma is the familiar inclu-
sion/exclusion formula 1[a;|k or as|k] = 1[ai|k] + 1[aq|k] — 1]aiaz|k].
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Proof of Lemma 4. We use induction on m. The case m = 1 is trivial.
For m > 2 we have

1[a;|k for some 4] =1[a,,|k] + 1[a;|k for some i < m)]
— l[am|k, and a;|k for some i < m}

We claim that the last condition “a,,|k, and a;|k for some i < m” is
equivalent to £,,|k. Once this is established, the result follows by substi-
tuting the inductive hypothesis and the claim into the above equation.

Turning to the proof of the claim, if the given condition holds then
am|k and d|k, where d = a1 M- - -Ma,,—1. So k is divisible by a,,Ud = £,,.
For the converse, recall from (*) that ¢,,, = a,, LUl a; for some j < m, so
,|k implies a, |k and a;|k. O

Proof of Theorem 2 (second equality). Suppose (*) holds, and let M,
and D,, denote the sets of partitions in (ii) and (iii) respectively. We
will show |M,,| = |D,,|.

Using Lemma 3, the generating function for |M,| is

G(q) rzianlq"zﬁ {Zq’“} HHZ X 62

n=0 t=1 - keS

When the product over ¢ is expanded, the factor (1 — ¢%!) contributes
a factor (1 — ¢¥) in the numerator for each k that is a non-negative
multiple of /;; similarly for the factors in the denominator. Thus

o0 =S Aalk] 4 S 1[4k
G(q)zH(l—qk) Doy Hail k] + 377, 1[0[]

> —1[a;|k for some i 1
— k _
() i
k=1 k>1:

a;|k for some ¢

B
Il
—

(In the second equality we have used Lemma 4.) But the last expression
is the generating function for |D,|. O

QUESTIONS

Can Theorems 1 and 2 be given simple bijective proofs? Dan Romik
has found an affirmative answer for Theorem 1 (personal communica-
tion). Is condition (*) necessary and sufficient for the identity between
(i) and (iii) in Theorem 2? For those aq,...,a, not satisfying this
identity, are the partitions of type (i) or type (iii) equinumerous with
partitions in some other natural classes? Can condition (*) be ex-
pressed in a more natural form?
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