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Abstract. The number of partitions of n into parts divisible by
a or b equals the number of partitions of n in which each part and
each difference of two parts is expressible as a non-negative integer
combination of a and b. This generalizes identities of MacMahon
and Andrews. The analogous identities for three or more integers
(in place of a, b) hold in certain cases.

1. Introduction

A partition of n is an unordered multiset of positive integers (called
parts) whose sum is n. For positive integers a1, . . . , am we denote the
set of non-negative integer combinations

S = S(a1, . . . , am) :=
{
∑m

i=1 xiai : x1, . . . , xm ∈ N0

}

,

where N0 := {0, 1, 2, . . .}.

Theorem 1. For positive integers n, a1 and a2, the following are all
equinumerous:

(i) partitions of n in which each part and each difference between
two parts lies in S(a1, a2);

(ii) partitions of n in which each part appears with multiplicity
lying in S(a1, a2);

(iii) partitions of n in which each part is divisible by a1 or a2.

For example, when (n, a1, a2) = (13, 3, 4), the three sets of partitions
are: (i) {(13), (10, 3), (7, 3, 3)}; (ii) {(3, 3, 3, 1, 1, 1, 1)}, (2, 2, 2, 1, . . . , 1),
(1, . . . , 1)}; (iii) {(9, 4), (6, 4, 3), (4, 3, 3, 3)}.

We also establish the following partial extension to three or more
integers a1, . . . , am. Let u and t denote greatest common divisor and
least common multiple respectively.
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Theorem 2. For any positive integers n and a1, . . . , am, the following
are equinumerous:

(i) partitions of n in which each part and each difference between
two parts lies in S(a1, . . . , am);

(ii) partitions of n in which each part appears with multiplicity
lying in S(a1, . . . , am).

If a1, . . . , am can be ordered such that

∀i = 2, . . . , m, ∃j < i such that (a1 u · · · u ai−1) t ai = aj t ai. (*)

then in addition the following are equinumerous with (i) and (ii):

(iii) partitions of n in which each part is divisible by some ai.

Note that (*) holds automatically when m = 2, so Theorem 1 is a
special case of Theorem 2.

2. Remarks

To avoid uninteresting cases, a1, . . . , am should be coprime, and none
should be a multiple of another. (Indeed, if the greatest common divisor
is g > 1 then Theorem 2 reduces easily to the case (n′, a′

1, . . . , a
′
m) =

g−1(n, a1, . . . , am), while if aj is a multiple of ai then the statements of
the theorem are unchanged by removing aj from a1, . . . , am).

The set S is sometimes interpreted as describing sums of money that
can be formed using coins of given denominations. When a1, . . . , am are
coprime, the complement SC := N0 \ S is finite; see e.g. [10]. The case
m = 2 was studied by Sylvester [11], who proved for a1, a2 coprime that
|SC| = 1

2
(a1 − 1)(a2 − 1) and max SC = (a1 − 1)(a2 − 1)− 1. The case

m ≥ 3 was proposed by Frobenius, and is much less well understood
in general. An exception is when a1, . . . , am satisfy a certain condition
which is implied by our condition (*); see [9]. For more information
see [10].

When m = 2 we have for example S(2, 3)C = {1}; S(3, 4)C =
{1, 2, 5}; S(2, 5)C = {1, 3}; S(3, 5)C = {1, 2, 4, 7}; S(4, 5)C =
{1, 2, 3, 6, 7, 11}. Larger sets {a1, . . . , am} satisfying condition (*) in-
clude {4, 6, 9}; {6, 8, 9}; {6, 9, 10}; {pm−1, pm−2q, . . . , qm−1} for p, q co-
prime; {π/p1, . . . , π/pm} for p1, . . . , pm pairwise coprime and π :=
∏

i pi. We have for instance S(4, 6, 9)C = {1, 2, 3, 5, 7, 11}.
In the case {a1, a2} = {2, 3}, the equality between (i) and (iii) in

Theorem 1 gives the following partition identity due to MacMahon [8,
§299–300] (see also [3, p. 14, Examples 9–10]).

The number of partitions of n into parts not congruent
to ±1 modulo 6 equals the number of partitions of n with
no consecutive integers and no ones as parts.
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The generalization to {a1, a2} = {2, 2r + 1}, r ∈ N0 was proved (in
a form similar to that above) by Andrews [2]. The other cases of
Theorems 1 and 2 appear to be new. Other recent work related to
MacMahon’s identity appears in [1, 4, 7]. Somewhat similar identities
are proved in [5]. For more information on partitions and partition
identities see e.g. [3].

Finally we note that the second assertion in Theorem 2 cannot hold
for arbitrary a1, . . . , am with m ≥ 3. For example, it does not hold
for {a1, a2, a3} = {2, 3, 5}: we have S(2, 3, 5) = S(2, 3), but allowing
multiples of 5 in addition to multiples of 2 and 3 clearly increases the
number of partitions of type (iii) for some n.

3. Proofs

As remarked above, Theorem 1 is the m = 2 case of Theorem 2. We
will prove the two assertions of Theorem 2 separately. The proofs are
simpler when m = 2, and the reader may find it helpful to bear this
case in mind throughout.

Proof of Theorem 2 (first equality). Fix a1, . . . , am, and let Fn and Mn

be the sets of partitions in (i) and (ii) respectively. We will show that
|Fn| = |Mn|.

For a partition λ = (λ1, . . . , λr) (where n =
∑

i λi and λ1 ≥ · · · ≥
λr), the conjugate partition λ′ = (λ′

1, . . . , λ
′
r′) is defined as usual by

r′ = λ1 and λ′
i = max{j : λj ≥ i}. Since the set S is closed under

addition, the condition that λ has all parts and differences between
parts in S is equivalent to the condition that each adjacent pair in
the sequence λ1, λ2, . . . , λr, 0 differs by an element of S. On the other
hand, it is readily seen that the latter condition is equivalent to the
condition that λ′ has all multiplicities in S (indeed this holds for any
set S). Hence conjugation is a bijection between Fn and Mn. �

Our proof of the second assertion in Theorem 2 relies on the two
simple lemmas below. Given integers a1, . . . , am we write

`i := (a1 u · · · u ai−1) t ai.

Lemma 3. If a1 . . . , am satisfy condition (*) then we have the formal
power series identity

∑

k∈S(a1,...,am)

qk =

∏m

i=2(1 − q`i)
∏m

i=1(1 − qai)
.

In the case when m = 2 and a1, a2 are coprime, the above expression
has the appealing form (1 − qa1a2)(1 − qa1)−1(1 − qa2)−1, as noted in
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[12]. Expressions for the left side for m = 3 and arbitrary a1, a2, a3, are
derived in [6, 12].

Proof of Lemma 3. We use induction on m. When m = 1 we have
∑

k∈S(a1)

qk = 1 + qa1 + q2a1 + · · · =
1

1 − qa1

as required.
For m ≥ 2, clearly any k ∈ S(a1, . . . , am) can be expressed as

k = xam + y, where x ∈ N0 and y ∈ S(a1, . . . , am−1). (1)

We claim that under condition (*), each such k has a unique such
representation subject to the additional constraint

x < `m/am. (2)

Once this is proved we obtain
∑

k∈S(a1,...,am)

qk = (1 + qam + q2am + · · ·+ q`m−am)
∑

k∈S(a1,...,am−1)

qk.

By the inductive hypothesis this equals

1 − q`m

1 − qam

×

∏m−1
i=2 (1 − q`i)

∏m−1
i=1 (1 − qai)

,

which is the required expression.
To check the above claim, let j = j(m) be as in condition (*), and

write d = a1u· · ·uam−1, so that `m = dtam = aj tam. Now note that
any representation k = xam + y as in (1) that violates (2) may be re-
expressed as k = (x−`m/am)am +(y+`m), where x−`m/am ∈ N0, and
y + `m ∈ S(a1, . . . , am−1) (since `m is a multiple of aj). By repeatedly
applying this we can reduce x until (2) is satisfied, as required. To check
uniqueness, note that all elements of S(a1, . . . , am−1) are divisible by
d, while the `m/am quantities 0, am, 2am, . . . , `m − am are all distinct
modulo d (since `m = d t am). Hence we see that no two distinct
expressions xam + y satisfying (1),(2) can be equal. �

Let 1[·] denote an indicator function and let | denote “divides”.

Lemma 4. If a1 . . . , am satisfy condition (*) then for any positive in-
teger k,

1
[

ai|k for some i
]

=
m

∑

i=1

1[ai|k] −
m

∑

i=2

1[`i|k].

When m = 2 and a1, a2 are coprime, the lemma is the familiar inclu-
sion/exclusion formula 1[a1|k or a2|k] = 1[a1|k] + 1[a2|k] − 1[a1a2|k].
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Proof of Lemma 4. We use induction on m. The case m = 1 is trivial.
For m ≥ 2 we have

1
[

ai|k for some i
]

=1[am|k] + 1
[

ai|k for some i < m
]

− 1
[

am|k, and ai|k for some i < m
]

We claim that the last condition “am|k, and ai|k for some i < m” is
equivalent to `m|k. Once this is established, the result follows by substi-
tuting the inductive hypothesis and the claim into the above equation.

Turning to the proof of the claim, if the given condition holds then
am|k and d|k, where d = a1u· · ·uam−1. So k is divisible by amtd = `m.
For the converse, recall from (*) that `m = am t aj for some j < m, so
`m|k implies am|k and aj|k. �

Proof of Theorem 2 (second equality). Suppose (*) holds, and let Mn

and Dn denote the sets of partitions in (ii) and (iii) respectively. We
will show |Mn| = |Dn|.

Using Lemma 3, the generating function for |Mn| is

G(q) :=
∞

∑

n=0

|Mn| q
n =

∞
∏

t=1

[

∑

k∈S

qkt

]

=
∞
∏

t=1

∏m

i=2(1 − q`it)
∏m

i=1(1 − qait)
.

When the product over t is expanded, the factor (1 − q`it) contributes
a factor (1 − qk) in the numerator for each k that is a non-negative
multiple of `i; similarly for the factors in the denominator. Thus

G(q) =
∞
∏

k=1

(

1 − qk
)−

∑m

i=1 1[ai|k] +
∑m

i=2 1[`i|k]

=

∞
∏

k=1

(

1 − qk
)−1[ai|k for some i]

=
∏

k≥1:
ai|k for some i

1

1 − qk
.

(In the second equality we have used Lemma 4.) But the last expression
is the generating function for |Dn|. �

Questions

Can Theorems 1 and 2 be given simple bijective proofs? Dan Romik
has found an affirmative answer for Theorem 1 (personal communica-
tion). Is condition (*) necessary and sufficient for the identity between
(i) and (iii) in Theorem 2? For those a1, . . . , am not satisfying this
identity, are the partitions of type (i) or type (iii) equinumerous with
partitions in some other natural classes? Can condition (*) be ex-
pressed in a more natural form?
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