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Abstract. A sorting network is a shortest path from 12 · · ·n to
n · · · 21 in the Cayley graph of the symmetric group Sn gener-
ated by nearest-neighbor swaps. A pattern is a sequence of swaps
that forms an initial segment of some sorting network. We prove
that in a uniformly random n-element sorting network, any fixed
pattern occurs in at least cn2 disjoint space-time locations, with
probability tending to 1 exponentially fast as n → ∞. Here c is
a positive constant which depends on the choice of pattern. As
a consequence, the probability that the uniformly random sorting
network is geometrically realizable tends to 0.

1. Introduction

Let Sn be the group of all permutations σ = (σ(1), . . . , σ(n)) of
{1, . . . , n} with composition given by (στ)(i) = σ(τ(i)). We denote by
σj the adjacent transposition or swap (j j+1) = (1, . . . , j+1, j, . . . , n).
A sorting network of size n is a sequence (s1, s2, . . . , sN) of N :=

(
n
2

)

integers with 0 < sk < n, such that the composition σs1σs2 · · ·σsN

equals the reverse permutation (n, n− 1, . . . , 1). We sometimes say
that at time k a swap occurs at position sk, and we illustrate a sorting
network by a set of crosses with coordinates (k, sk) for k = 1, . . . , N .
(This is natural, since the crosses may be joined by horizontal lines to
give a “wiring diagram” consisting of n polygonal lines whose order is
reversed as we move from left to right; see Figure 1.)
Interest in sorting networks was initiated by Stanley, who proved

in [St] that the number of sorting networks of size n is equal to the
number of standard staircase-shape Young tableaux of size n, i.e. those
with shape (n − 1, n − 2, . . . , 1). Uniformly random sorting networks
were introduced and studied by Angel, Holroyd, Romik, and Virag in
[AHRV], giving rise to many striking results and conjectures.
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Figure 1. Left: the sorting network (1, 3, 2, 1, 3, 2) of size 4, illus-
trated by crosses corresponding to its swaps. Right: the associated
wiring diagram.

A pattern is any finite sequence of positive integers that is an initial
segment of some sorting network. Thus for example, (1, 2, 1) and (4, 2)
are patterns, but (1, 1) and (1, 2, 1, 2) are not. The size of a pattern
is the minimum size of a sorting network that contains it as an ini-
tial segment, which is also one more than the maximal element in the
pattern.
Let ω = (s1, . . . , sN) be a sorting network of size n and let γ be

a pattern. Let [i, j] ⊆ [1, N ] and [a, b] ⊆ [1, n − 1], and consider the
subsequence t1, . . . , t` of si, . . . , sj consisting of precisely those elements
lying in the interval [a, b]. We say that the pattern γ occurs at time
interval [i, j] and position [a, b] (or simply at [i, j]× [a, b]) if γ = (t1 −
a+1, . . . , tk − a+1), and no k ∈ [i, j] has sk ∈ {a− 1, b+1}. In other
words, the swaps in the space-time window [i, j] × [a, b] are precisely
those of γ, after an appropriate shift in location, and there are no swaps
at the two adjacent positions in this time interval. See Figure 2 for an
example.
We say that a pattern γ occurs R times in a sorting network ω

if R is the maximum integer for which there exist pairwise disjoint
rectangles {[ir, jr]×[ar, br]}

R
r=1 such that γ occurs at each. See Figure 3.

Theorem 1. Fix any pattern γ of size k. There exist constants c1, c2 >
0 (depending on γ) such that for every n ≥ k, the pattern γ occurs at
least c1n

2 times in a uniformly random sorting network of size n, with
probability at least 1− e−c2n.

We conjecture that the probability in Theorem 1 is in fact at least
1− e−cn2

for some c = c(γ).
We will prove Theorem 1 by establishing a closely related result

about uniformly random standard staircase-shape Young tableaux, and
using a bijection due to Edelman and Greene [EG] between sorting
networks and Young tableaux.
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Figure 2. The pattern (2, 1, 2) occurs in the sorting network
(1, 3, 2, 4, 1, 3, 4, 2, 1, 3) at time interval [i, j] = [4, 7] and position
[a, b] = [3, 4]. Note the requirement that the shaded regions contain
no swaps.
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Figure 3. Pattern (1, 2) occurs 3 times in the sorting network
(4, 2, 3, 1, 4, 2, 1, 3, 4, 2).

Write N = {1, 2, . . .}. A Young diagram λ is a set of the form
{(i, j) ∈ N

2 : 1 ≤ j ≤ λi}, where λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ 0 are integers
and

∑∞
i=1 λi =: |λ| < ∞. The numbers λi are the row lengths of λ.

In what follows we denote by (λ1, λ2, . . . ) the Young diagram with row
lengths λ1 ≥ λ2 ≥ . . . . We call an element x = (i, j) ∈ λ a box, and
draw it as a unit square at location (i, j) (with the traditional conven-
tion that (1, 1) is at the top left and the first coordinate is vertical). A
tableau T of shape λ is a map from λ to the integers whose values are
non-decreasing along rows and columns. We call T (x) the entry as-
signed to box x. A standard Young tableau is a tableau T of shape
λ such that the set of entries of T is {1, 2 . . . , |λ|}. We are mostly
interested in standard staircase-shape Young tableaux of size n,
i.e. those with shape staircase Young diagram (n− 1, n− 2, . . . , 1).
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Figure 4. A standard Young tableau T of shape λ = (5, 5, 4, 3, 1),
the subdiagram λ(3,2), the subtableau T (3,2), and a standard Young
tableau identically ordered with T (3,2).

For (i, j), (k, `) ∈ N
2 we write (i, j) ≤ (k, `) if i ≤ k and j ≤ `. For

a Young diagram λ and a box (i, j) ∈ λ, we define the subdiagram

λ(i,j) with top-left corner (i, j) by λ(i,j) := {(k, `) ∈ λ : (k, `) ≥ (i, j)};
clearly λ(i,j) is mapped to a Young diagram by the translation (k, `) 7→
(k − i + 1, ` − j + 1). If T is a tableau of shape λ then we define the
subtableau T (i,j) to be the restriction of T to λ(i,j), and we call λ(i,j)

the support of T (i,j).
We say that two tableaux S and T of the same shape λ are iden-

tically ordered if for all x, y ∈ λ we have S(x) < S(y) if and only if
T (x) < T (y). Furthermore, if S and T are tableaux or subtableaux,
and there is a translation θ that maps (bijectively) the support of S to
the support of T , then we say that S and T are identically ordered

if for all x, y in the support of S we have S(x) < S(y) if and only if
T (θ(x)) < T (θ(y)). Figure 4 illustrates the above notations.
Theorem 1 will be deduced from the following.

Theorem 2. Let T be any standard staircase-shape Young tableau of
size k. For some positive constants c′1, c

′
2 and c′3 (depending only on

k), with probability at least 1 − e−c′
3
n, a uniformly random standard

staircase-shape Young tableau of size n ≥ k contains at least c′1n sub-
tableaux with pairwise disjoint supports such that:

(1) each is identically ordered with T ;
(2) all their entries are greater than N − c2n.

As an application of Theorem 1 we prove that a uniformly random
sorting network is not geometrically realizable in the following sense.
Consider a set X of n points in R

2 such that no two points from X
lie on the same vertical line, no three points are collinear, and no two
pairs of points define parallel lines. Label the points 1, . . . , n from
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left to right (i.e. in order of their first coordinate). Let Xφ be the set
obtained by rotating R

2 by angle φ about the origin, and let σφ be the
permutation found by reading the labels in Xφ from left to right. As
φ increases from 0 to π, the permutation σφ changes via a sequence of
swaps, which form a sorting network. Any sorting network that can
be generated in this way is called geometrically realizable. (Such
networks were called stretchable in [AHRV], but this term is used with
a different meaning in [GR, GP]).
Goodman and Pollack [GP] gave an example of a sorting network

of size 5 that is not geometrically realizable. On the other hand, in
[AHRV], it was conjectured (on the basis of strong experimental and
heuristic evidence) that a uniformly random sorting network is with
high probability approximately geometrically realizable, in the sense
that its distance to some random geometrically realizable network tends
to zero in probability (in a certain natural metric). The conjectures
of [AHRV] would also imply that, for fixed m, the sorting network
obtained by observing only m randomly chosen particles from a uni-
formly random sorting network of size n ≥ m is with high probability
geometrically realizable as n → ∞. (The conjectures also imply that
these size-m networks have a limiting distribution as n → ∞, as well
as providing a precise description of the limit. Certain aspects of the
latter prediction were verified rigorously in [AH].) However, we prove
that with high probability a uniformly random sorting network is not
itself geometrically realizable.

Theorem 3. The probability that a uniformly random sorting network
of size n is geometrically realizable tends to zero as n tends to infinity.

While our proof yields an exponential (in n) bound on the probability
that a uniform sorting network of size n is geometrically realizable, we
believe the probability is even O(e−cn2

).
The paper is organized as follows. In Section 2 we recall basic def-

initions and the Edelman-Greene bijection between sorting networks
and standard Young tableaux. In Sections 3 and 4 we prove some
auxiliary lemmas about Young tableaux and sequences of random vari-
ables, respectively. In Section 5 we prove Theorem 2 and then deduce
Theorem 1 as a corollary. Finally, in Section 6 we prove Theorem 3.

2. Sorting networks and Young tableaux

Edelman and Greene [EG] introduced a bijection between sorting
networks of size n and standard staircase-shape Young tableaux of size
n, i.e. of shape (n−1, n−2, . . . , 1). We describe it in a slightly modified
version that is more convenient for us.
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Figure 5. A standard staircase-shape Young tableau, sliding
paths (shaded) and the sequence of tableaux in the Edelman–
Greene bijection. Here n = 4 and the corresponding sorting net-
work is (2, 1, 3, 2, 3, 1). Vertical lines show the correspondence be-
tween the positions of maximal entries in the tableaux and numbers
s1, . . . , sN of the sorting network.

Given a standard staircase-shape Young tableaux T of size n, we
construct a sequence of integers s1, . . . , sN as follows. Set T1 = T and
repeat the following for t = 1, 2, . . . , N .

(1) Let x = (n − j, j) be the location of the maximal entry in the
tableau Tt. Set st = j.

(2) Compute the sliding path, which is a sequence x1, x2, . . . , x`,
such that x1 = x and for i = 1, 2, . . . we define xi+1 to be the
box among {xi− (1, 0), xi− (0, 1)} with larger entry in Tt, with
the convention that Tt(x) = 0 for every x outside the staircase
Young diagram of size n. Let ` be the minimal i such that
Tt(xi) = 0.

(3) Perform the sliding, i.e. define the tableau Tt+1 as follows. Set
Tt+1(xi) = Tt(xi+1) for i = 1, . . . , `− 1 and set Tt+1(y) = Tt(y)
for all boxes y of the staircase Young diagram of size n not
belonging to {x1, . . . , x`−1}.

An example of this procedure is shown in Figure 5. Edelman and
Greene [EG] proved that the resulting sequence of numbers is indeed
a sorting network, and furthermore that the algorithm provides a bi-
jection between standard staircase-shape Young tableaux and sorting
networks.
Now we fix n, consider the set of all sorting networks of this size and

equip it with the uniform measure. The Edelman–Greene bijection
maps this measure to the uniform measure on the set of all standard
staircase-shape Young tableaux of size n.
Given a standard Young tableau T of shape λ with |λ| = M we

define a sequence of Young diagrams by

λi = {x ∈ λ : T (x) ≤ M − i}.
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Figure 6. Hook (clear) and co-hook (shaded) in a Young diagram.

Thus λ = λ0 ⊃ λ1 ⊃ · · · ⊃ λM = ∅, and λi \ λi+1 consists of the single
box T−1(|λ|−i). If T is a uniformly random standard Young tableau of
shape λ, then conditional on λi, λi−1, . . . , λ0, the restriction of T to λi

is uniformly random. Thus the sequence of diagrams described above
is a Markov chain.

3. Some properties of Young tableaux

In this section we present a fundamental result about Young dia-
grams (the hook formula) and deduce some of its consequences.
When drawing pictures of Young diagrams we adopt as usual the

convention that the first coordinate i (the row index) increases down-
wards while the second coordinate j (the column index) increases from
left to right. Given a Young diagram λ, its transposed diagram λ′

is obtained by reflecting λ with respect to diagonal i = j. The column
lengths of λ are the row lengths of λ′.
For any box x = (i, j) of a Young diagram λ, its arm is the collection

of λi− j boxes to its right: {(i, j′) ∈ λ : j′ > j}. The leg of x is the set
{(i′, j) ∈ λ : i′ > i} of λ′

j − i boxes below it. The union of the box x,
its arm and its leg is called the hook of x. The number of boxes in the
hook is called the hook length and is denoted by h(x). The co-arm

is the set {(i, j′) ∈ λ : j′ < j}; the co-leg is the set {(i′, j) ∈ λ : i′ < i},
and their union (which does not include x) is called the co-hook and
denoted by C(x). See Figure 6. Finally, a corner of a Young diagram
λ is a box x ∈ λ such that h(x) = 1, or equivalently such that λ \ {x}
is also a Young diagram.
The dimension dim(λ) of a Young diagram λ is defined as the num-

ber of standard Young tableaux of shape λ (thus named because it is
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the dimension of the corresponding irreducible representations of the
symmetric group).

Lemma 4 (Hook formula; [FRT]). The dimension dim(λ) satisfies

dim(λ) =
|λ|!∏

x∈λ

h(x)
.

See e.g. [FRT] or [M] for a proof.

Corollary 5. Let T be a uniformly random standard Young tableau of
shape λ, and let x be a corner of λ. The location T−1(|λ|) of the largest
entry is distributed as follows.

P
(
T−1(|λ|) = x

)
=

dim(λ \ {x})

dim(λ)
=

1

|λ|

∏

z∈C(x)

h(z)

h(z)− 1
.

(Note that h(z) > 1 for any box in the co-hook C(x), so the right side
is finite.)

Proof. This is immediate from Lemma 4. �

Lemma 6. Fix ` > 0. Let a Young diagram λ be a subset of the
staircase Young diagram of size n, and let x = (i, j) be a corner of
λ with i, j ≥ n/3 and n − i − j ≤ `. Let T be a uniformly random
standard Young tableau of shape λ. We have

P
(
T (x) = |λ|

)
≥

c

n
,

where c is a constant depending only on `.

There is nothing special about the bound n
3
on i, j – the lemma and

proof hold as long as i, j ≥ εn, though the constant in the resulting
bound tends to 0 as ε → 0.

Proof of Lemma 6. The box (i − k, j) of the co-hook has hook length
λi−k − j + k + 1 ≤ n− i− j + 2k + 1 ≤ ` + 2k + 1. Similarly the box
(i, j − k) has hook length at most ` + 2k + 1. It follows that

P(T−1(|λ|) = x) =
1

|λ|

∏

k<i

h(k, j)

h(k, j)− 1

∏

k<j

h(i, k)

h(i, k)− 1

≥
1

n2

( ∏

k<n/3

`+ 2k + 1

`+ 2k

)2

.
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Figure 7. The co-hooks C(x) and C(y) (shaded) and the matched
parts of the co-arms and co-legs (hatched in matching directions).

(Here we used that the factors are all decreasing in h, greater than 1,
and that i, j ≥ n/3.) It is now easy to estimate

( ∏

k<n/3

`+ 2k + 1

`+ 2k

)2

≥

( ∏

k<n/3

` + 2k + 1

`+ 2k

)( ∏

k<n/3

`+ 2k + 2

`+ 2k + 1

)

=
`+ 2bn/3c+ 2

` + 2
> cn

for some c = c(`). �

Lemma 7. Let T be a uniformly random standard Young tableau of
shape λ, let x and y be two corners of λ and ` = ‖x− y‖∞. Then

P(T−1(|λ|) = x)

P(T−1(|λ|) = y)
≤ (`+ 1)(2`+ 1).

For our application all we need is a bound of the form C(`) on this
ratio, though we note that the bound we get is close to optimal for a
tableau of shape (n+ 1, n, . . . , n) with `+ 1 rows, for large n.

Proof of Lemma 7. To compare the expressions from Corollary 5 for x
and y, let us introduce a partial matching between C(x) and C(y). We
match boxes of the co-arm of x and the co-arm of y if they are in the
same column. We match boxes of the co-leg of x and the co-leg of y if
they are in the same row. All boxes inside the rectangle with opposite
vertices x and y remain unmatched (see Figure 7).
Writing x = (i1, j1) and y = (i2, j2) without loss of generality assume

that i1 < i2 and j1 > j2. Clearly, if z ∈ C(x) and z′ ∈ C(y) are a
matched pair, then h(z′) = h(z)± s, where s = i2− i1+ j1− j2 and the
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sign is plus if the box z belongs to the co-leg of x and minus otherwise.
Let M(x), U(x) be the matched and unmatched parts of the co-hooks
and similarly for y. We have

(1)
P(T−1(|λ|) = x)

P(T−1(|λ|) = y)
=

∏
z∈U(x)

h(z)

h(z)− 1

∏
z∈U(y)

h(z)

h(z)− 1

×
∏

z∈M(x)

(
h(z)

h(z)− 1

)

(
h(z)± s

h(z)− 1± s

) ,

where the choice of the sign ± depends on whether a box z belongs to
the co-arm or the co-leg of x.
Let us bound the right side of (1). First note that all the boxes

in the co-arm of x and all the boxes in the co-leg of y are matched.
The product over z ∈ U(y) is at least 1. Next, there are at most `
unmatched boxes of the co-arm of x and their hook lengths are distinct.
Consequently

∏

z∈U(x)

h(z)

h(z)− 1
≤

`+1∏

m=2

m

m− 1
= `+ 1.

Turning to the last product in (1), a matched pair of boxes from the
co-arms contributes to (1) the factor

(
h(z)

h(z)− 1

)

(
h(z)− s

h(z)− 1− s

) ,

which is easily seen to be less than 1.
Finally, every matched pair of boxes from the co-legs contributes to

(1) the factor
(

h(z)

h(z)− 1

)

(
h(z) + s

h(z)− 1 + s

) = 1 +
s

(h(z)− 1)(h(z) + s)
,

This is greater than 1 for any h(z). As z varies over a co-leg of x, the
values of h(z) are distinct. Consequently, the contribution from the
matched boxes from the co-legs is bounded from above by

∞∏

m=2

(
m

m− 1

)

(
m+ s

m− 1 + s

) = lim
r→∞

r

r + s
(s+ 1) = s+ 1 ≤ 2`+ 1.
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Multiplying all the aforementioned inequalities we get the required es-
timate. �

4. Sequences of random variables

Recall that a real-valued random variable Y stochastically domi-

nates another real-valued random variable Z if and only if there exist

a probability space Ω and two random variables Ỹ , Z̃ defined on Ω,

such that Ỹ
d
= Y and Z̃

d
= Z, and Ỹ ≥ Z̃ almost surely.

Lemma 8. Let X1, . . . , XN be random variables taking values in
{1, . . . , m,∞} such that a.s. each a ∈ [1, m] appears exactly
r times. Let Ai be events, and define the filtration Fi =
σ (X1, . . . , Xi, A1, . . . , Ai−1). Assume P(Ai | Fi) ≥ p a.s. for some
p > 0 and all i. Let Ga be the event

Ga =

N⋂

i=1

(
{Xi 6= a} ∪ Ai

)
,

that is that Ai occurs whenever Xi = a. Then
∑m

a=1 1Ga
stochastically

dominates the binomial random variable Bin(m, pr).

To clarify the lemma, it helps to think of having m counters initial-
ized at 0. At each step, a counter is selected (or no counter, signified
by Xi = ∞), and that counter is advanced with probability at least p.
The event Ga is that the ath counter is advanced every time it is se-
lected. Then after every counter has been selected r times, the number
of counters with the highest possible value r stochastically dominates a
Bin(m, pr) random variable. Note that the order in which counters are
selected may depend arbitrarily on the past selections and advances.
While this lemma seems intuitively clear and perhaps even obvious,
the precise assumptions on the dependencies among the events and
variables make the proof slightly delicate.

Proof of Lemma 8. First, we want to extend the probability space, and
define events A′

i ⊆ Ai and a finer filtration F ′
i in such a way that

P(A′
i | F

′
i) = p for all i.

Let Ω be our original probability space and let µ be our original prob-
ability measure. For i = 1, 2, . . . , N let E i be the set of all elementary
events in the finite σ–algebra Fi that have non-zero probabilities (with
respect to µ). For any E ∈ E i let ΩE

i denote the probability space {0, 1}
with probability measure µE

i such that µE
i (1) = p/P(Ai | E). Our new
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probability space Ω′ is the product of Ω and all ΩE
i :

Ω′ = Ω×
N∏

i=1

∏

E∈Ei

ΩE
i .

In other words, an element of Ω′ is a pair (ω, f), where ω ∈ Ω and f
is a function from

⊔
i E

i to {0, 1} (here
⊔

denotes set-theoretic disjoint
union, so

⊔
i E

i := ∪i{(E, i) : E ∈ Ei}). We equip Ω′ with the prob-
ability measure µ′ which is the direct product of µ and the measures
µE
i :

µ′ = µ×
N∏

i=1

∏

E∈Ei

µE
i .

In what follows we do not distinguish between a random variable X(ω)
defined on Ω and the random variable X(ω, f) := X(ω) defined on Ω′.

In the same way we identify any event A of Ω with Ã := {(ω, f) ∈ Ω′ :
ω ∈ A} ⊆ Ω′. In what follows all the probabilities are understood with
respect to µ′.
For any E ∈

⊔
i E

i let fE denote the random variable on Ω′ given by

fE(ω, f) = f(E).

Now for any E ∈ E i ⊆
⊔

j E
j set

BE
i := {(ω, f) ∈ Ω′ | ω ∈ E, f(E) = 1} = E ∩ {fE = 1}.

Denote

B(i) =
⋃

E∈Ei

BE
i

and let A′
i = Ai ∩ B(i).

Let us introduce a filtration on Ω′:

F ′
i = σ

(
X1, . . . , Xi, A1, . . . , Ai−1, {f

E}
)
,

where E runs over all elements of
⊔i−1

j=1 E
j.

Note that A′
i ∈ F ′

i+1. We claim that P(A′
i | F ′

i) = p for every i.
Indeed, this immediately follows from the definition of A′

i and the fact

that A′
i is independent of all f

E for E ∈
⊔i−1

j=1 E
i.

Moreover, consider any sequence of stopping times 1 ≤ τ1 < · · · <
τ` ≤ N (w.r.t. the filtration F ′). We claim that P

(⋂
i≤` A

′
τi

)
= p`. The
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proof is a simple induction in `. For ` = 1 we have

P(A′
τ1) =

N∑

i=1

P(A′
i ∩ {τ1 = i})

=
N∑

i=1

P(τ1 = i)P(A′
i | τ1 = i)

(∗)
=

N∑

i=1

P(τ1 = i) · p = p,

where in the equality (∗) we used that P(A′
i | F

′
i) = p and {τ1 = i} ∈

F ′
i. Now assume that our statement is true for ` = h − 1. Then for

` = h we have

P

(
h⋂

i=1

A′
τi

)
=

N∑

j=1

P(τ1 = j)P(A′
j | τ1 = j)P

(
h⋂

i=2

A′
τi
| A′

j ∩ {τ1 = j}

)
.

Note that for i ≥ 2 the restriction of τi on the set A′
j∩{τ1 = j} is again

a stopping time. Indeed, by the definition, j < τi ≤ N on {τ1 = j},
and for k > j we have {τi ≤ k} ∩ A′

j ∩ {τ1 = j} ∈ F ′
k, since both

{τi ≤ k} ∈ F ′
k and A′

j ∈ F ′
k and {τ1 = j} ∈ F ′

k. Therefore, using the
induction assumption we conclude that if P(A′

j ∩ {τ1 = j}) > 0, then

P(
⋂h

i=2A
′
τi
| A′

j ∩ {τ1 = j}) = ph−1. Hence,

P

(
h⋂

i=1

A′
τi

)
=

N∑

j=1

P(τ1 = j)P(A′
j | τ1 = j)ph−1 =

N∑

j=1

P(τ1 = j)ph = ph.

Now, let

G′
a =

N⋂

i=1

(
{Xi 6= a} ∪ A′

i

)
⊆ Ga.

Applying the above claim to the r ordered stopping times τi defined by

{τ1, . . . , τr} = {k : Xk = a}

we find P(G′
a) = pr. Moreover, for any set S ⊆ [1, m], by taking the

r|S| ordered stopping times τSi defined by

{τ1, . . . , τr|S|} = {k : Xk ∈ S}

we find

P

(
⋂

a∈S

G′
a

)
= pr|S|.

It follows that the events G′
a are independent, and so

m∑

a=1

1Ga
≥

m∑

a=1

1G′

a

d
= Bin(m, pr). �
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Lemma 9. Let X1, . . . , XN be random variables taking values in
{1, . . . , m,∞} such that a.s. each a ∈ [1, m] appears exactly r times.

Denote Sk(a) := #{i ≤ k : Xi = a}. Let F̂k = σ(X1, . . . , Xk), and sup-
pose moreover that for some c > 0 and all a, k, on the event Sk(a) < r

(which lies in F̂k), we have

P
(
Xk+1 = a | F̂k

)
>

c

m
.

Finally, let Dk = #{a : Sk(a) = r}. Then for every ε > 0 there are
constants c1, c2, depending on c, r but not on m or N , such that

P
(
Dc1m ≤ (1− ε)m

)
< e−c2m.

Proof. Let Tk =
∑m

a=1 Sk(a), and note that Tk > mr − εm implies
Dk > (1− ε)m.

On the event Dk ≤ (1 − ε)m we have E(Tk+1 | F̂k) − Tk ≥ cε.
Let Mk be cεk − Tk, stopped when Dk exceeds (1 − ε)m, then we
see that Mk is a supermartingale with bounded increments. By the
Azuma-Hoeffding inequality for supermartingales (which follows from
the martingale version by Doob decomposition; see e.g. [Az] or [W,
E14.2 and 12.11]), for any c1 > 0 there is a c2 so that P(Mc1m > m) ≤
e−c2m.
If Mc1m ≤ m and M is not yet stopped at time c1m, then

Tc1m ≥ (cεc1m− 1)m. If c1 is such that cεc1m−1 > r, this cannot hold,
so M is stopped by time c1m with probability at least 1− e−c2m. �

Corollary 10. Let Xi, Ai for i = 1, . . . , N be two random sequences

satisfying the assumptions of both Lemmas 8 and 9. Let Ĝ(a, i) be the
intersection of the events Ga and {Si(a) = r}, i.e.

Ĝ(a, i) = {Si(a) = r} ∩
N⋂

j=1

(
{Xj 6= a} ∪ Aj

)
.

Set Q̂(i) =
∑

a 1Ĝ(a,i). There exist positive constants c1, c2, c3 (which

depend on r, p, c, but not on m,N) such that P
(
Q̂(c1m) > c2m

)
>

1− e−c3m.

If we again think about m counters, then the corollary means simply
that after time c1m, with probability at least 1 − e−c3m, at least c2m
counters will have advanced r times.

Proof of Corollary 10. Denote Q =
∑

a 1Ga
. Lemma 8 implies that

Q stochastically dominates a binomial random variable. Thus, by a
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standard large deviation estimate (see e.g. [K, Chapter 27]), for some
positive constants c4, c5 we have

P(Q > c4m) > 1− e−c5m.

Take ε = c4/2 in Lemma 9. It follows that for some c1 with probability

at least 1− e−c6m random variable Q̂(c1m) differs from Q by not more
than c4m/2. Thus,

P

(
Q̂(c1m) > c4m/2

)
> 1− e−c3m. �

5. Proofs of the main results

We are now ready to prove Theorems 1 and 2. We denote by T̂
a standard staircase-shape Young tableau of size k and by T a uni-
formly random standard staircase-shape Young tableau of size n. In

what follows k and T̂ are fixed while n tends to infinity. Given T̂ , the
idea is to consider cn specific disjointly supported subtableaux of T in
columns bn/3c, . . . , b2n/3c and show that linearly many (in n) of them

are identically ordered with T̂ .

Proof of Theorem 2. Within the staircase Young diagram λ of size n we
fix m := bn/(3k−3)c disjoint subdiagrams K1, . . . , Km of λ in columns
bn/3c, . . . , b2n/3c, each a translation of a staircase Young diagram of
size k. Let θi be the translation mapping Ki to the staircase Young
diagram.
Let N :=

(
n
2

)
and r :=

(
k
2

)
. We now construct sequences Xt and At

to which we shall apply Lemmas 8 and 9, as random variables on the
probability space of standard staircase-shape Young tableaux T of size
n with uniform measure. Set Xt = a if T−1(N + 1 − t) belongs to Ka

and set Xt = ∞ if T−1(N +1− t) does not belong to
⋃

a Ka. Note that
each a ∈ {1, . . . , m} appears exactly r times among X1, . . . , XN .
Next, we define the events At. If Xt = ∞ then At occurs. Otherwise,

let a = Xt and suppose Xt is the ith occurrence of a among X1, . . . , Xt

(or equivalently, N− t+1 is the ith largest entry in Ka). If there is any
s < t with Xs = a for which As does not occur, then At does occur.
Finally, if the box T−1(N − t+ 1) is in the same position within Ka as

T̂−1(r− i+1) is within the staircase Young diagram of size k (in other

words, if θa(T
−1(N − t+ 1)) = T̂−1(r− i+ 1)), then At occurs. If it is

not in the same position, then At does not occur. In other words, At

fails to occur precisely if for some a, number t is the minimal number
such that the locations of entries {N − t + 1, . . . , N} imply that the

subtableau supported by Ka and T̂ are not identically ordered.
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Rephrasing in terms of counters, we do the following. Recall that a
uniformly random standard staircase-shape Young tableau T is associ-
ated with a Markov chain of decreasing Young diagrams λt. Each step
of this Markov chain is a removal of a box from a Young diagram. If
the box x removed at step t belongs to Kh, then we choose the hth
counter at this step. This counter advances if either the position of

x is the correct one (as dictated by the order in T̂ ), or if the correct
order of the entries of T inside Kh was already broken before tth step.
Clearly, if the hth counter advances r times, then the subtableau of T
with support Kh is identically ordered with T̂ .
Let us check that the sequences Xt and At, and the numbers r, m,

N , satisfy the conditions of Lemma 8 with

p =
1

2k3
.

As noted, every a ∈ {1, . . . , m} appears among X1, . . . , XN exactly r
times. Thus, it remains to bound from below the conditional proba-
bilities of At. Define Ft as in Lemma 8 and let W be an elementary
event of Ft. We must prove that P(At | W ) ≥ p. If Xt = ∞ on W ,
then P(At | W ) = 1 ≥ p. If some previous As with s < t and Xs = Xt

did not occur (on W ) then again P(At | W ) = 1 ≥ p.
In the remaining case, whether or not T belongs to At depends on

the position of the box T−1(N − t + 1); specifically, T belongs to At if

this box is the correct one according to T̂ of the possible boxes in the
subdiagram KXt

. Let a denote the value of Xt on W . The Markov
property of the sequence λt implies that

P(At | W ) =
∑

µ

P(λt−1 = µ | W ) · P(At | λ
t−1 = µ, W )

=
∑

µ

P(λt−1 = µ | W ) · P(At | Xt = a, λt−1 = µ),
(2)

where the sum is taken over all Young diagrams µ with |µ| = N − t+1
boxes that are contained in the staircase Young diagram of size n.
Let us bound P(At | Xt = a, λt−1 = µ) from below. The condition

Xt = a means that the box T−1(N − t + 1) is situated in the subdi-
agram Ka. Thus, given Xt = a and λt−1 = µ, there are at most k
possible positions for the box T−1(N + t − 1). Lemma 7 implies that
the conditional probabilities of different positions differ at most by a
factor of 2k2 (since the parameter ` in that lemma is at most k − 2).
Consequently, the conditional probability of each position is at least
1/(2k3). Exactly one of the positions corresponds to the event At. We



A PATTERN THEOREM FOR RANDOM SORTING NETWORKS 17

conclude that

P(At | Xt = b, λt−1 = µ) ≥
1

2k3

Hence, (2) gives

P(At | W ) ≥
1

2k3

∑

µ

P(λt−1 = µ | W ) =
1

2k3
.

Finally, let us check that the sequence Xt satisfies the conditions of
Lemma 9. Note that the condition St(a) < r means that the subdi-
agram Ka is not filled by boxes T−1(N − s + 1) with s ≤ t. Thus,
St(a) < r if and only if λt ∩Ka 6= ∅. Note that the event {St(a) < r}

belongs to F̂t. Let V be an elementary event from F̂t such {St(a) < r}
on V . Using the Markov property of the sequence λi we obtain:

P(Xt+1 = a | V ) =
∑

µ

P(λt = µ | V ) P(Xt+1 = a | λt = µ, V )

=
∑

µ

P(λt = µ | V ) P(Xt+1 = a | λt = µ),

where the sum is taken over the set of all Young diagrams µ with
|µ| = N − t boxes that are subsets of the staircase Young diagram of
size n. Since V ⊆ {St(a) < r}, we have P(λt = µ | V ) 6= 0 only for µ
such that µ ∩Ka is non-empty.
Consequently, in order to prove that

P(Xt+1 = a | V ) >
c

m

for some positive constant c, it suffices to show that

P(Xt+1 = a | λt = µ) >
c

m

for any Young diagram µ contained in the staircase Young diagram of
size n and such that µ ∩Ka is non-empty. Any such diagram µ has at
least one corner inside Ka. Applying Lemma 6 for µ and this corner
yields the required bound.
Applying Corollary 10 to the sequences Xt and At we get the state-

ment of Theorem 2. �

We now deduce Theorem 1 using the Edelman-Greene bijection.

Proposition 11. Fix any pattern γ of size k. There exist constants
c3, c4 and c5 (depending on γ) such that for every n ≥ k, the pattern γ
occurs at least c3n times within the time interval [1, c4n] of a uniformly
random sorting network of size n with probability at least 1− e−c5n.
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7
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3+7

Figure 8. “Padding” a tableau Tγ to get T̂ . Here k = 3.

Note that Proposition 11 differs from Theorem 1 in that we consider
only the beginning of the network and hence only find a linear number
of occurrences of γ.

Proof of Proposition 11. Clearly, it suffices to prove Proposition 11 for
patterns of the maximum length k(k − 1)/2, in other words a sorting
network of size k. Such a pattern γ = (γ1, . . . , γk(k−1)/2) corresponds
via the Edelman-Greene bijection to some standard staircase-shape
Young tableau Tγ of size k. Consider a larger standard staircase-shape

Young tableau T̂ of size k + 2, where entries of the hook of (1, 1)
are the numbers 1, . . . , 2k + 1 (in an arbitrary admissible order) and
the remaining staircase-shaped Young tableau of size k − 1 contains
2k + 2, . . . , (k + 2)(k + 1)/2 and is identically ordered with Tγ . An
example of this construction is shown in Figure 8.
Let c3, c4 and c5 be the constants c′1, c

′
2 and c′3 of Theorem 2, re-

spectively. Let T be a standard staircase-shape Young tableau of size
n having at least c3n disjointly supported subtableaux identically or-

dered with T̂ , furthermore, all the entries of these subtableaux are
greater than N − c4n. (Theorem 2 implies that a uniformly random
standard staircase-shape Young tableau of size n ≥ k is of this kind
with probability at least 1 − e−c5n.) Suppose that the support of the
`th such subtableau (` = 1, 2, . . . , c3n) is a subdiagram K` with top-
left corner (n− j` − k, j`). Let K

′
` denote the subdiagram with top-left

corner (n−j`−k+1, j`+1) and note that the subtableau with support
K ′

` is identically ordered with Tγ .
Let ω be the sorting network corresponding to T via the Edelman-

Greene bijection. Note that in the Edelman-Greene bijection, every
tableau entry moves towards the boundary of the staircase Young di-
agram until it becomes the maximal entry in the tableau, and then it
disappears and adds to the sorting network a swap in position j, where
j is the column of the entry just before it disappeared. It follows that
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all the entries starting in K` disappear in the columns j`, . . . , j`+k and,
thus, add to the sorting network swaps si satisfying j` ≤ si ≤ j` + k.
Furthermore, observe that all the entries starting in K ′

` disappear (in
columns si satisfying j` < si < j` + k) before the entries in K` \ K ′

`.
Finally, note that until all entries starting in K ′

` disappeared no other
entry can disappear in columns j`, . . . , j` + k.
We conclude that for every `, the pattern γ occurs in ω at [1, t`] ×

[j`+1, j`+k−1]. Thus, pattern γ occurs in ω at least c3n times within
the time interval [1, c4n]. �

Proof of Theorem 1. Let c3, c4, c5 be the constants from Proposi-
tion 11, and let m := dc4ne. For t = 1, . . . , bN/mc let It be the
set of all sorting networks ω of size n such that γ occurs in ω at least
c3n times within the time interval [(t − 1)m + 1, tm]. Proposition 11
yields that P(I1) ≥ 1− e−c5n.
A uniformly random sorting network (s1, s2 . . . , sN) is stationary in

the sense that (s1, . . . , sN−1) and (s2, . . . , sN) have the same distribu-
tions (see [AHRV, Theorem 1]). Thus P(It) does not depend on t.
There exist constants c6 > 0 and n0 such that if n > n0, then

bN/mc e−c5n ≤ e−c6n. Let c1 = min( c3
4c4

, c3
n0

) and c2 = min(c5, c6). Let
I denote the set of all sorting networks ω of size n such that γ occurs
c1n

2 times in ω. If n > n0 then we have

P(I) ≥ P

(⋂

t

It

)
≥ 1−

∑

t

(
1− P(It)

)
≥ 1− bN/mc e−c5n ≥ 1− e−c2n.

And if k ≤ n ≤ n0, then I1 ⊆ I and

P(I) ≥ P(I1) ≥ 1− e−c5n ≥ 1− e−c2n. �

6. Uniform sorting networks are not geometrically

realizable

Proof of Theorem 3. Goodman and Pollack proved in the paper [GP]
that there exists a sorting network γ of size 5 that is not geometrically
realizable. This sorting network is shown in Figure 9. (This is the
smallest possible size of such a network.)
Let us view γ as a pattern. Suppose that γ occurs in a sorting net-

work ω at time interval [1, t] and position [a, b]. We claim that w is
not geometrically realizable. Indeed, if ω were a geometrically realiz-
able sorting networks associated with points x1, . . . , xn ∈ R

2 (labeled
from left to right), then γ would be a geometrically realizable sorting
network associated with the points xa, . . . , xb.
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1

2

3

4

1 2 3 4 5 6 7 8 9 10

Figure 9. A sorting network that is not geometrically realizable.

Proposition 11 yields that with tending to 1 probability γ occurs
within the time interval [1, c4n] of a uniformly random sorting network
ω of size n and thus ω is not geometrically realizable. �
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