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Abstract
Suppose that red and blue points occur as independent homoge-

neous Poisson processes in Rd. We investigate translation-invariant
schemes for perfectly matching the red points to the blue points. For
any such scheme in dimensions d = 1, 2, the matching distance X
from a typical point to its partner must have infinite d/2-th moment,
while in dimensions d ≥ 3 there exist schemes where X has finite ex-
ponential moments. The Gale-Shapley stable marriage is one natural
matching scheme, obtained by iteratively matching mutually closest
pairs. A principal result of this paper is a power law upper bound on
the matching distance X for this scheme. A power law lower bound
holds also. In particular, stable marriage is close to optimal (in tail
behavior) in d = 1, but far from optimal in d ≥ 3. For the problem
of matching Poisson points of a single color to each other, in d = 1
there exist schemes where X has finite exponential moments, but if we
insist that the matching is a deterministic factor of the point process
then X must have infinite mean.

1 Introduction

Let R be a simple point process of finite intensity in Rd. The support
of R is the random set [R] := {x ∈ Rd : R({x}) = 1}. Elements of [R]
are called red points. A one-color matching scheme of R is a simple
point process M of unordered pairs {x, y} ⊂ Rd, on a shared probability
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Figure 1: Matchings of 2000 uniformly random points on a 2-dimensional
torus: (i) stable 1-color; (ii) minimum-length 1-color; (iii) stable 2-color; (iv)
minimum-length 2-color.
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space, such that almost surely (V,E) = ([R], [M]) is a random graph which
is a perfect matching of [R] (i.e. a simple graph with all degrees 1). Let
B be a second simple point process, and call elements of [B] blue points.
A two-color matching scheme between R and B is a process M which
similarly yields almost surely a perfect bipartite matching between [R] and
[B] (i.e. a perfect matching of [R] ∪ [B] where all the edges are from [R] to
[B]). In either case we denote byM(x) the partner of a red or blue point x;
that is the unique point such that {x,M(x)} ∈ [M]. See Figure 1 for some
examples on the finite torus.

We say that a one-color (respectively two-color) matching scheme M is
translation-invariant if the law of the joint process (R,M) (respectively
(R,B,M)) is invariant under translations of Rd. Isometry-invariance is
defined analogously. If almost surelyM = f(R) (respectivelyM = f(R,B))
for some deterministic function f then we callM a factor matching scheme.
We sometimes refer to a matching scheme which is not a factor as random-
ized.

For a translation-invariant one-color or two-color matching scheme, let P
be the probability measure governing (R,M) or (R,B,M), and E the associ-
ated expectation operator. We are interested in the typical distance between
matched pairs. Assume without loss of generality that R has intensity 1
(otherwise rescale). For r ∈ [0,∞] it is natural to consider the quantity

F (r) := E#
{
x ∈ [R] ∩ [0, 1)d : |x−M(x)| ≤ r

}
,

where | · | denotes the Euclidean norm. It is easy to see that F is a distribu-
tion function, therefore we introduce a random variable X with probability
measure P∗ and expectation operator E∗ such that

P∗(X ≤ r) = F (r). (1)

We can think of X as the typical distance from a red point to its partner.
In fact, this interpretation can be made rigorous via the technology of Palm
processes – see Section 2 below.

We consider the following main questions. For Poisson processes on Rd,
what is the best possible tail behavior (as measured by X) for a translation-
invariant (or isometry-invariant) matching scheme, in the one-color and two-
color cases? How do the answers depend on dimension? And if we insist on
a factor matching scheme? We also address the case of stable matchings –
see below.
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Note the following trivial lower bound on X. In the one-color or two-color
case, the partner of a point must be at least as far as the closest other point.
In the case when R (respectively R+ B) is a homogeneous Poisson process,
this gives

E∗ecXd

=∞ (2)

for some c = c(d) ∈ (0,∞).
The following theorems show that the optimal tail behavior of two-color

matching schemes depends dramatically on the dimension.

Theorem 1 (2-color upper bounds). Let R,B be independent Poisson pro-
cesses of intensity 1. There exist isometry-invariant two-color matching
schemes satisfying:

(i) in d = 1: P∗(X > r) ≤ Cr−1/2 ∀r > 0;

(ii) in d = 2: P∗(X > r) ≤ Cr−1 ∀r > 0;

(iii) in d ≥ 3: E∗eCXd
<∞.

Here C = C(d) ∈ (0,∞) denotes a constant. Furthermore, in (i) the match-
ing scheme is a factor.

Theorem 2 (2-color lower bounds; [14]). Let R,B be independent Poisson
processes of intensity 1. In d = 1 or d = 2, any translation-invariant two-
color matching scheme (factor or not) satisfies

E∗Xd/2 =∞.

Together with the trivial bound (2), Theorems 1 and 2 settle reason-
ably accurately the question of optimal tail behavior for randomized two-
color matchings. We do not know the optimal tail behavior for translation-
invariant factor matching schemes of two independent Poisson processes in
dimensions d ≥ 2. Theorem 2 was derived in [14] via results from [17, 12],
the proofs of which were quite involved. We will present here a simple direct
proof.

Here is a brief heuristic explanation for the above tail behavior, and in
particular the sharp difference between dimensions d ≤ 2 and d ≥ 3. In a
ball of large radius r, the discrepancy between the numbers of red and blue
points is typically a random multiple of rd/2 (by the central limit theorem).
This discrepancy must be accommodated via the boundary of the ball, which
has size of order rd−1. When d ≤ 2, the discrepancy exceeds the boundary
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(with substantial probability), so we expect that a fraction rd/2/rd = r−d/2

of points must be matched at distance at least of order r. When d ≥ 3, the
boundary exceeds the discrepancy, so far more efficient matching is possible,
with the tails determined by local deviations in the distribution of points.

The following illustrates a case where allowing additional randomization
makes a striking difference to tail behavior.

Theorem 3 (1-color, 1 dimension). Let d = 1, let R be a Poisson process of
intensity 1, and consider one-color matching schemes.

(i) Any translation-invariant factor matching satisfies E∗X =∞.
(ii) There exists an isometry-invariant randomized scheme satisfying
P∗(X > r) = e−r ∀r > 0.

The following shows that the above dichotomy does not extend to higher
dimensions.

Theorem 4 (1-color, 2 or more dimensions). Let R be a Poisson process of
intensity 1. For all d ≥ 2 there exists a translation-invariant one-color factor
matching scheme satisfying

E∗eCXd

<∞,

for some C = C(d) ∈ (0,∞). The same bound can be attained by a random-
ized isometry-invariant matching scheme in all d ≥ 2, and by an isometry-
invariant factor matching scheme in d = 2.

We do not know how to construct an isometry-invariant factor matching
satisfying the bound in Theorem 4 for d ≥ 3 (see the remarks in Section 4,
however).

Stable matching: Iterated mutually closest matching algorithm.
The following natural “greedy” algorithm gives a matching scheme by trying
to optimize locally. When considering a two-color matching, call a pair of
points x, y potential partners if one is red while the other is blue. In the
one-color case, call x and y potential partners if they are distinct points in
[R]. We say that potential partners x and y are mutually closest if y is
the closest potential partner to x and x is the closest potential partner to y.
Now, given the point configuration, match all mutually closest pairs to each
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other, then remove these points and match all mutually closest pairs in the
remaining set of points. Repeat indefinitely. ♦

It turns out that the above algorithm yields a perfect matching under
general conditions (Proposition 9), and in particular this holds almost surely
in the case when R is a Poisson process (and for the two-color case, when
B is an independent Poisson process of the same intensity). Furthermore, it
is the unique stable matching in the sense of Gale and Shapley [8]. (See
Section 2 for the details). Evidently (under the aforementioned conditions)
the stable matching gives an isometry-invariant factor matching scheme.

We can accurately describe the tail behavior of stable matchings in the
one-color case, but some questions remain in the two-color case.

Theorem 5 (1-color stable matching). Let R be a Poisson process of inten-
sity 1. For any d ≥ 1, the one-color stable matching satisfies

(i) E∗Xd =∞;

(ii) P∗(X > r) ≤ Cr−d ∀r > 0;

for some C = C(d) ∈ (0,∞).

Theorem 6 (2-color stable matching). Let R,B be independent Poisson
processes of intensity 1. For d ≥ 1, the two-color stable matching satisfies:

(i) E∗Xd =∞,
(Theorem 2 gives a better bound in d = 1, 2);

(ii) P∗(X > r) ≤ Cr−s ∀r > 0,
where s = s(d) ∈ (0, 1) satisfies s(1) = 1/2, and C = C(d) ∈ (0,∞).

The power s(d) is given explicitly as the solution of an equation, and for
example s(2) = 0.496 · · · and s(3) = 0.449 · · · – see Theorem 19. It is a
fascinating unsolved question to determine the correct power law for d ≥ 2
(see the open problems at the end of the article).

It is interesting that stable matching performs essentially optimally (in
terms of tail behavior) among (possibly randomized) matching schemes in
the two-color case for d = 1, but not for d ≥ 3, and not in the one-color case.

Summary

The following tables summarize the best known results for isometry-invariant
matchings of Poisson processes.
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1-color matching Lower bound Upper bound /
best construction

Randomized All d E∗ecXd
=∞ ≈ E∗eCXd

<∞
Factor d = 1 E∗X =∞ ≈ [P∗(X > r) ≤ Cr−1]

d ≥ 2 E∗ecXd
=∞ ≈ E∗eCXd

<∞ ((T) for d ≥ 3)
Stable All d E∗Xd =∞ ≈ P∗(X > r) ≤ Cr−d

2-color matching Lower bound Upper bound /
best construction

Randomized d = 1, 2 E∗Xd/2 =∞ ≈ P∗(X > r) ≤ Cr−d/2

d ≥ 3 E∗ecXd
=∞ ≈ E∗eCXd

<∞
Factor d = 1 [E∗X1/2 =∞] ≈ [P∗(X > r) ≤ Cr−1/2]

d = 2 [E∗X =∞] � [P∗(X > r) ≤ Cr−0.496···]

d ≥ 3 E∗ecXd
=∞ � [P∗(X > r) ≤ Cr−s(d)]

Stable d = 1 [E∗X1/2 =∞] ≈ P∗(X > r) ≤ Cr−1/2

d = 2 [E∗X =∞] � P∗(X > r) ≤ Cr−0.496···

d ≥ 3 E∗Xd =∞ � P∗(X > r) ≤ Cr−s(d)

Notes:
(T) Translation-invariant scheme only.
[· · · ] Bound follows from line above (lower bounds)

or below (upper bounds).
≈ Indicates reasonably close lower and upper bounds.
� Indicates a substantial gap between the lower

and upper bounds.

Extensions to other processes

The results on 2-color matchings in Theorems 1, 2, 6 all extend, with similar
proofs, to the following two variant settings.

(i) Perfect matchings of Heads to Tails for i.i.d. fair coin flips indexed by
Zd (see [14, 18, 20] for details). (In order to define stable matchings
in this context, one must specify a way to break ties between pairs of
sites Zd which are the same distance apart). Here the random variable
X denotes the distance from the origin to its partner.

(ii) Fair allocations of Lebesgue measure to a Poisson process (see [11] and
also [5, 10, 14] for definitions and background). Here X denotes the
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distance from the origin to its allocated Poisson point. The resulting
upper bounds on the stable allocation in Theorem 6(ii) represent a
considerable improvement on the previous best results: X was known
to have finite (1/18)th moment in d = 1, and no quantitative upper
bound was known in d ≥ 2 [10].

Where appropriate, we make remarks following the proofs regarding the
adaptation of our results to these settings.

Some of our results extend easily to point processes other than the Pois-
son process. In particular, Theorem 5(ii) holds for any translation-invariant
simple point process for which the stable matching is well-defined (see Propo-
sition 9). Theorems 5(i) and 6(i) hold provided in addition the point processes
are tolerant of local modifications (see Proposition 18).

Another interesting variant concerns matching of random points on large
finite boxes; see e.g. [1, 3, 7, 19]. We do not explore this connection in depth,
but our proof of Theorem 1(iii) relies on the remarkable results of [19].

2 Preliminaries

In this section we present some useful elementary definitions and results.

Some notation

Let L denote Lebesgue measure on Rd, and denote the Euclidean ball B(x, r)
:= {z ∈ Rd : |x − z| < r}. We denote the unit cube Q := [0, 1)d ⊂ Rd, and
Qu := Q+ u for u ∈ Zd.

Palm processes

Consider a translation-invariant one-color or two-color matching scheme, and
let P be the probability measure governing (R,M) or (R,B,M). We intro-
duce the Palm process (R∗,M∗) or (R∗,B∗,M∗), with law P∗ and expec-
tation E∗, in which we condition on the presence of a red point at the origin,
while taking M and (in the two color-case) B as a stationary background.
See e.g. [15, Ch. 11] for details. In the case when R is a homogeneous Poisson
process, it turns out that R∗ has the same distribution as R with an added
point at the origin:

[R∗] d
= [R] ∪ {0}. (3)
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Also, if R and B are independent processes then R∗ and B∗ are independent,

and B∗ d
= B.

If R is a translation-invariant measure-valued process of intensity λ ∈
(0,∞), and (R∗,Ψ∗) is the Palm version of R taken together with any jointly
translation-invariant random background Ψ (which may be a random func-
tion or a random measure on Rd), then the following properties are standard
(see [15, Ch. 11]). Let θx denote translation by x ∈ Rd (defined to act on
measures via (θxπ)(S) = π(S − x) for S ⊆ Rd). For any measurable S ⊆ Rd

and any event A we have

E
∫
S

1
[
θ−x(R,Ψ) ∈ A

]
dR(x) = λ · LS · P∗

[
(R∗,Ψ∗) ∈ A

]
. (4)

(Indeed this may be taken as a definition of the Palm process). More gener-
ally, for any non-negative measurable f on the appropriate space,

E
∫
Rd

f
(
θ−x(R,Ψ), x

)
dR(x) = λ

∫
Rd

E∗f
(
(R∗,Ψ∗), x

)
dx. (5)

Let M be a translation-invariant (one- or two- color) matching scheme.
If we let

X := |M∗(0)| (6)

denote the distance from the origin to its partner under the Palm measure,
then (4) yields in particular

E#
{
x ∈ [R] ∩ S : |x−M(x)| ≤ r

}
= λ · LS · P∗(X ≤ r). (7)

Hence the above definition of X is consistent with the earlier notation in (1).
Note that the tail bound (2) for the Poisson process is now an elementary

consequence of (3) and (6).

Partial matching and mass transport

A partial matching of a set U is the edge set m of a simple graph (U,m)
in which each vertex has degree at most 1. As before we write m(x) = y
if {x, y} ∈ m, and in addition we write m(x) = ∞ if x is unmatched (i.e.
has degree 0). A one-color (respectively two-color) partial matching
schemeM is a point process on pairs which yields almost surely a partial
matching of [R] (respectively between [R] and [B]).
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Proposition 7 (Fairness). Let R,B be simple point processes of finite inten-
sity, and let M be a translation-invariant two-color partial matching scheme
of R and B. Then the process of matched red points and the process of
matched blue points have equal intensity.

In particular, Proposition 7 shows that translation-invariant perfect mat-
ching schemes are possible only between two point processes of equal inten-
sity. In addition, by applying the result to the matching obtained by deleting
all edges longer than r, we see that X is equal in law to the analogous random
variable defined in terms of a typical blue point.

We prove Proposition 7 via the following lemma which will be useful
elsewhere. (See [4] for background).

Lemma 8 (Mass transport principle).

(i) Suppose t : Zd × Zd → [0,∞] satisfies t(u + w, v + w) = t(u, v) for
all u, v, w ∈ Zd, and write t(A,B) :=

∑
u∈A,v∈B t(u, v). Then

t(0,Zd) = t(Zd, 0).

(ii) Suppose T is a random non-negative measure on Rd ×Rd such that
T (A,B) := T (A × B) and T (A + w,B + w) are equal in law for all
w ∈ Zd. Then

ET (Q,Rd) = ET (Rd, Q).

Proof.
(i): t(0,Zd) =

∑
u∈Zd t(0, u) =

∑
u∈Zd t(−u, 0) = t(Zd, 0).

(ii): Apply (i) to t(u, v) := ET (Qu, Qv).

We sometimes call t or T a mass transport, and think of t(A,B) or
T (A,B) as the amount of mass sent from A to B.

Proof of Proposition 7. Apply Lemma 8 to the mass transport

T (A,B) := #{x ∈ [R] ∩ A :M(x) ∈ B}

in which each matched red point sends unit mass to its partner. Then
ET (Q,Rd) = E#{x ∈ [R] ∩ Q : M(x) 6= ∞}, which is the intensity of
matched red points, while similarly ET (Rd, Q) is the intensity of matched
blue points.

10



Stable matching

Following Gale and Shapley [8], we say that a partial matching m of a set
U ⊂ Rd is stable if there do not exist distinct points x, y ∈ U satisfying

|x− y| < min
{
|x−m(x)|, |y −m(y)|

}
, (8)

where |x−m(x)| :=∞ if x is unmatched. A pair x, y satisfying (8) is called
unstable. (The motivation for this definition is that each point prefers to
be matched with closer points, so an unstable pair x, y prefer to divorce
their current partners and marry each other.) Similarly, a partial bipartite
matching between two sets U, V is called stable if there do not exist x ∈ U
and y ∈ V satisfying (8).

We call a set U ⊂ Rd non-equidistant if there do not exist w, x, y, z ∈ U
with {w, x} 6= {y, z} and |w − x| = |y − z| > 0. A descending chain is
an infinite sequence x0, x1, . . . ∈ U for which the distances |xi − xi+1| form a
strictly decreasing sequence.

Proposition 9 (Unique stable matching). Let R be a translation-invariant
homogeneous point processes of finite intensity. (Respectively, let R,B be
point processes of equal finite intensity, jointly ergodic under translations).
Suppose that almost surely [R] (respectively [R]∪ [B]) is non-equidistant, and
has no descending chains. Then almost surely there is a unique stable partial
matching of [R] (respectively between [R] and [B]). Furthermore, it is almost
surely a perfect matching, and it is produced by the iterated mutually closest
matching algorithm described in the introduction.

Under the conditions in Proposition 9, the stable matching has the fol-
lowing additional interpretation. Grow a ball centered at each red point
(respectively, each red point and each blue point) simultaneously, so that at
time t all the balls have radius t. Whenever two balls touch (respectively,
whenever an R-ball and a B-ball touch), match their centers to each other,
and remove the two balls.

The conditions on the point processes in Proposition 9 hold in particular
for homogeneous Poisson processes, as proved in [9]. Clearly, under the
conditions of the proposition, the unique stable matching gives an isometry-
invariant factor matching scheme. We postpone the proof of Proposition 9
to Section 5.
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3 Two-color matching

In this section we give proofs of Theorems 1 and 2.

Proof of Theorem 1(i). Use the stable matching (see Proposition 9 and The-
orem 6(ii)).

Proof of Theorem 1(ii). We shall give a construction which works in all di-
mensions, and gives a matching scheme with tails P∗(X > r) ≤ Cr−d/2.

First note that it is sufficient to give a translation-invariant matching sat-
isfying the required bound, for then we may obtain a (randomized) isometry-
invariant version by applying a uniformly random isometry preserving the
origin (i.e., chosen according to the Haar measure on the compact group of
such isometries) to (R,B,M). Indeed, it suffices to give a matching scheme
which is invariant under translations by elements of Zd and which satisfies

E#{x ∈ [R] ∩Q : |x−M(x)| > r} ≤ Cr−d/2, (9)

for then we may achieve a translation-invariant version satisfying the same
bound by similarly applying a uniformly random translation in the unit cube
Q.

We start by defining a sequence of successively coarser random partitions
of Rd into boxes in a Zd-invariant way. Let τ0, τ1, . . . be i.i.d. uniformly ran-
dom elements of the discrete cube {0, 1}d, independent of the point processes
R,B. For each k = 0, 1, . . ., define a k-box to be any subset of Rd of the
form

[0, 2k)d + 2kz +
k−1∑
i=0

2iτi,

where z ∈ Zd.
Now, given the point processes R,B and the partitioning into boxes,

define a matching as follows. Within each 0-box, match as many red/blue
pairs as possible in some arbitrary pre-determined way. (For definiteness,
choose from among the bipartite partial matchings of maximum cardinality
the one which minimizes the total edge length.) Remove those points which
have been matched. Now match as many red/blue pairs of the remaining
points as possible within each 1-box, remove these matched points, and repeat
for 2-boxes and so on. The union of all these partial matchings clearly gives
a Zd-invariant partial matching scheme M between R and B.
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We shall prove that the partial matching M satisfies (9). From this it
follows by taking r →∞ that almost surely every red point is matched, and
hence by applying Lemma 7 (to the Rd-invariant version) that every blue
point is matched also.

Fix k, and call a red point k-bad if it has not been matched within its
k-box by stage k of the matching algorithm. Suppose each k-bad red point
distributes mass 1 uniformly to its k-box, i.e. let

T (A,B) :=
∑

x∈A∩[R]:x is k-bad

2−dkL{y ∈ B : x and y lie in the same k-box}.

Then we have

ET (Q,Rd) = E#{k-bad red points in Q}
≥ E#{x ∈ [R] ∩Q : |x−M(x)| > 2k

√
d} (10)

(since a k-box has diameter 2k
√
d).

On the other hand, writing W for the random k-box containing Q,

ET (Rd, Q) = 2−dk E#{k-bad red points in W}
= 2−dk E(R(W )− B(W ))+ = 2−dk ES+, (11)

where S := R[0, 2k)d − B[0, 2k)d, since the location of W is independent of
R,B.

The central limit theorem gives ES+/
√

2dk+1 → Eχ+ as k →∞, where χ
is a standard Gaussian. Combining this with (10),(11) and applying Lemma
8 we deduce (9) for some C = C(d) ∈ (0,∞) and all r = 2k

√
d with k =

0, 1, 2 . . .. Hence by taking 2k
√
d ≤ r < 2k+1

√
d the same holds (with a

modified constant) for all r > 0.

Proof of Theorem 1(iii). We will deduce the result by a limiting argument
from a result in [19] on matchings of finite sets of points; a similar argument
was used in [14].

The following is proved in [19, equation (1.8)]. Let d ≥ 3 and let Rn

and Bn each consist of n point masses whose locations are all independent
and uniformly distributed on [0, 1]d. Then for each n there exists a two-color
matching scheme Fn between Rn and Bn such that

P(Gn) ≥ 1−n−2, where Gn :=

{
n−1

∑
x∈[Rn]

exp
(
Cn|x−Fn(x)|d

)
≤ 2

}
. (12)
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Here the constant C depends on d but not n.
Now let F̃n be Fn conditioned on the event Gn (this corrects a minor

error in [14]). We construct a translation-invariant matching schemeMn by

scaling F̃n to cover a cube of volume n, and tiling Rd with identical copies of
this matching, with the origin chosen uniformly at random. More formally,
regarding a two-color matching scheme M as a simple point process (i.e.
a random point measure) of ordered pairs (x, y) ∈ Rd × Rd in which the
presence of a point (r, b) ∈ [M] indicates a matched pair r ∈ [R] and b ∈ [B],
we define

Mn(A×B) :=
∑
z∈Zd

F̃n
(
n1/d(A+ U + z)× n1/d(B + U + z)

)
,

where U is uniformly distributed on [0, 1]d and independent of F̃n. Then (12)
implies that for any Borel A ⊆ Rd we have

E
∫∫

exp
(
C|x− y|d

)
1x∈AMn(dx× dy) ≤ 2LA. (13)

(To check this, we first use invariance to deduce that the left side must be a
linear multiple of LA, and then take A = [0, n1/d]d to find the constant).

By (13), the random sequence (Mn) is tight in the vague topology of
measures on Rd × Rd (see [15, Lemma 16.15]). Therefore let M be any
subsequential limit in distribution, and note that it has the following proper-
ties. It is a two-color matching scheme between the marginal point processes
M(·,Rd) andM(Rd, ·). These processes are independent Poisson point pro-
cesses of intensity 1 (this would clearly be true for any limit constructed in
the same way from the unconditioned matchings Fn, therefore it holds for
M because P(Gn)→ 1). The process M inherits the translation-invariance
of Mn. Finally, it satisfies (13) (with M replacing Mn), which implies
E∗eCXd ≤ 2 as required.

Remarks. The analogous results to Theorem 1(iii) for matchings of coin
flips on Zd and for fair allocations of Rd may be proved by following a similar
limiting argument in the appropriate space (see [14] for another variant).
The required matchings and allocations on finite cubes exist by the results
of [19].

The result (12) is a special case of a much more general result in [19],
proved by deep (and indirect) methods. A remark is made in [19] that the

14



bound (12) can also be proved for an explicit matching obtained from the
construction in [1]. Also, by results in [5], in d ≥ 3 it is possible to ob-
tain an explicit “transport” between two independent Poisson processes (i.e.
a translation-invariant random measure T on Rd × Rd with marginals R
and B), satisfying a tail bound that is exponential in a power of distance.
(Specifically, construct the “gravitational allocations” – see [5] – for R and
B independently, and let a red point r send to a blue point b a mass equal
to the volume of the intersection of the cell of r and the cell of b.)

We do not know the optimal tail behavior of translation-invariant factor
matching schemes of two independent Poisson processes in dimensions d ≥ 2.
We suspect that there exist factor matchings satisfying the same bounds
as in the randomized case (see Theorem 1). For the analogous questions
concerning coin flips on Zd, substantial progress has been made by T. Soo
[18] and A. Timar [20]. ♦

Theorem 2 is Corollary 9 of [14], which in turn was deduced from results
on “extra head schemes” in [12, 17]. Here we give a simple direct argument.

Proof of Theorem 2 (case d=1). Using (5) and Fubini’s theorem, for t > 0
we have

E#
{
x ∈ [R] ∩ [0, 2t] :M(x) /∈ [0, 2t]

}
≤ E#

{
x ∈ [R] ∩ [0, 2t] : |M(x)− x| > x ∧ (2t− x)

}
=

∫ 2t

0

P∗
[
X > x ∧ (2t− x)

]
dx

= 2E∗(X ∧ t).

Now the central limit theorem gives

E#
{
x ∈ [R] ∩ [0, 2t] :M(x) /∈ [0, 2t]

}
≥ E

[
(R[0, 2t]− B[0, 2t])+

]
∼ Ct1/2

as t→∞ for some C ∈ (0,∞). On the other hand, if E∗X1/2 <∞ then the
dominated convergence theorem gives t−1/2E∗(X ∧ t) → 0 as t → ∞, so we
obtain a contradiction.

For any x, y ∈ Rd, we define the line-segment 〈x, y〉 := {λx+ (1− λ)y :
λ ∈ [0, 1]} ⊂ Rd. The following lemma will be used to derive a contradiction
in the proof of Theorem 2 in the case d = 2.
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Lemma 10 (Edge intersections). For any translation-invariant 1-color or
2-color matching scheme M (of any translation-invariant point process(es))
which satisfies E∗X < ∞, the number of matching edges {x, y} ∈ [M] such
that the line segment 〈x, y〉 intersects the unit cube Q has finite expectation.

Proof. Consider the mass transport

t(u, v) := E#
{
x ∈ [R] ∩Qu : 〈x,M(x)〉 intersects Qv

}
.

Since an edge of length ` intersects at most d(1 + `) cubes of the form z+Q,
where z ∈ Zd, we have

t(0,Zd) ≤ d+ dE
∑

x∈Q∩[R]

|x−M(x)| = d(1 + E∗X) <∞,

hence by Lemma 8,

E#{matching edges intersecting Q} = t(Zd, 0) <∞.

Proof of Theorem 2 (case d=2). Without loss of generality we may assume
that the matching scheme M is ergodic with respect to the full group of
translations of R2; if not we apply the claimed result to the ergodic compo-
nents. Therefore suppose for a contradiction thatM is an ergodic matching
scheme satisfying E∗X <∞.

For an ordered pair of distinct sites x, y ∈ R2, we define the random
variable K(x, y) to be the number of matching edges which intersect the
directed line segment 〈x, y〉 with the red point on the left and the blue on
the right. More precisely, K(x, y) is the number of pairs {r, b} ∈ [M] with
r ∈ [R] and b ∈ [B] such that 〈r, b〉 intersects 〈x, y〉, and det

(
b−r
y−x

)
> 0. Also

define F (x, y) := K(x, y) − K(y, x), the “net red-blue flow” across the line
segment.

Lemma 10 and the assumption of finite mean imply that EK(x, y) < ∞
and hence EF (x, y) < ∞ for any fixed x, y. Note also the antisymmetry
F (x, y) = −F (y, x) and the additivity property that if y ∈ 〈x, z〉 (and these
sites are deterministic), then a.s. F (x, y) + F (y, z) = F (x, z). Fix vectors
x, u ∈ R2 with u 6= 0. Using the ergodic theorem we deduce

F (x, x+ nu)

n

a.s. and L1

−−−−−−→ Φ(x, u) as n→∞, (14)
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for some random variable Φ(x, u) with finite mean. We will show next that
a.s. Φ(x, u) is constant in x, and deduce that it is deterministic.

For linearly independent vectors a, b ∈ R2, assume them ordered so that
det
(
a
b

)
> 0, and let S = S(a, b) be the interior of the parallelogram with

vertices 0, a, b, a+ b. The difference R(S)−B(S) equals the number of edges
crossing the boundary of S with the red point inside and the blue point
outside minus the number crossing in the opposite orientation. Hence, a.s.,

R(S)− B(S) = F (0, a)− F (b, a+ b) + F (a, a+ b)− F (0, b). (15)

(Note in particular that matching edges which intersect two sides of S do
not contribute to the right side of (15), since the positive and negative con-
tributions cancel.)

Applying this to S(a, b) = S(nu, x) with x and u as above (and assuming
det
(
u
x

)
> 0), we obtain

R(S)− B(S)

n
=
F (0, nu)

n
− F (x, x+ nu)

n
+
F (nu, x+ nu)

n
− F (0, x)

n
.

As n→∞, the left side converges a.s. to 0 by the strong law of large numbers,
while the last term converges a.s. to 0 because F (0, x) is a.s. finite. Also,

since for each n we have F (nu, x + nu)
d
= F (0, x), and the latter has finite

mean, the third term on the right converges a.s. to 0. Thus, using (14),

0 = Φ(0, u)− Φ(x, u) a.s.

Similarly, the same conclusion holds for x satisfying det
(
u
x

)
≤ 0. Thus Φ(0, u)

is a translation-invariant function ofM, so the ergodicity assumption implies
that it is an a.s. constant, say φ(u). Furthermore, since F (x, x+nu) has the
same law as F (0, nu), it now follows from (14) that

F (xn, xn + nu)

n

L1

−→ φ(u) as n→∞, (16)

for any u ∈ R2 and any deterministic sequence xn ∈ R2.
Now write h = (1, 0) and v = (0, 1), and apply (15) to the square

S(nh, nv) = (0, n)2. Dividing by n and using (16) gives

R(S)− B(S)

n

L1

−→ φ(h)− φ(h) + φ(v)− φ(v) = 0

as n → ∞; that is E|R(S) − B(S)| = o(n). But the central limit theorem
gives E|R(S)− B(S)| = Ω(n), a contradiction.
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Remark. We are grateful to Scott Sheffield for correcting an error in an
earlier version of the above proof. ♦

4 One-color matching

In this section we prove Theorems 3 and 4.
Consider the case d = 1. An adjacent matching of a discrete set U ⊂ R

is one in which for every edge {x, y}, the interval (x, y) contains no points of
U . Clearly for any given infinite discrete U there are exactly two adjacent
matchings (one in which the origin lies in (x, y) for some edge {x, y}, and
one in which it does not).

Proof of Theorem 3(ii). Conditional on R, choose one of the two adjacent
matchings each with probability 1/2. It is elementary to check that the
resulting matching scheme is isometry-invariant, and that M∗(0) is a sym-
metric two-sided exponential random variable.

The following lemma states that, unsurprisingly, we cannot achieve an
adjacent matching without randomization. In what follows we say that an
edge {x, y} of M crosses a site z ∈ R if z ∈ (x, y).

Lemma 11. Let R be a homogeneous Poisson process on R. There does not
exist a one-color factor matching scheme where the matching is almost surely
adjacent.

Proof. Suppose on the contrary that M is such a matching scheme. Write
FS for the σ-algebra generated by the restriction of R to S ⊆ R. Since the
event

A := {0 is crossed by some edge}
lies in FR, for every ε > 0 there exists r = r(ε) < ∞ and an event Aε ∈
F[−r,r] such that P(A4Aε) < ε. Moreover, by translation-invariance we can
find Bε ∈ F[−2r,0] such that P({−r is crossed}4Bε) < ε. For an adjacent
matching, observing the R-points in an interval together with whether some
deterministic point in the interval is crossed determines the matching on the
interval a.s. Hence there exists Lε ∈ F[−2r,0] ⊂ F(−∞,0] with P(A4Lε) < ε.
Since this is true for every ε > 0 we deduce that A ∈ F(−∞,0], where the
bar denotes completion under P. Similarly we have A ∈ F[0,∞), so A is
independent of itself and has probability 0 or 1. But now it is easy to see that
neither of the two resulting matching schemes is translation-invariant.
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Remark. Lemma 11 may be strengthened to the (equally unsurprising)
fact that the only a.s. adjacent matching scheme is the one in the proof of
Theorem 3(ii). Indeed, for such a scheme consider the a.e.-defined function
of point configurations f(π) := P(O is crossed | R = π) – we must show that
it equals 1/2 a.e. By translation-invariance, for a translation θ−t we have
a.e. f(θ−tπ) ∈ {f(π), 1 − f(π)}, according to the parity of π[0, t]. Hence
|f(π)− 1/2| is a translation-invariant function of π, so by ergodicity of R it
is a.e. constant. If the constant is c 6= 1/2 then the translation-equivariant
function hπ(t) := f(θ−tπ) assigns (a.e. with respect to π and t) values c and
1 − c to alternate intervals between points of the configuration π, and we
can clearly use this to construct an adjacent factor matching, contradicting
Lemma 11. ♦

Proof of Theorem 3(i). Suppose thatR is a Poisson point process of intensity
1 and M is a translation-invariant factor matching scheme. We claim that

P(0 is crossed by infinitely many edges) = 1. (17)

Suppose (17) is false. On the event that 0 is crossed by finitely many
edges, a.s. the same is true for any other r ∈ R, because the difference
between the number of edges crossing r and the number of edges crossing 0
is at most the number of red points between 0 and r. By ergodicity, it then
follows that a.s. every r ∈ R is crossed only finitely many times. We can now
define a new matching scheme, by matching two adjacent red points x and y
if and only if the sites r between them are crossed an odd number of times in
the matching M. The new matching is an adjacent factor matching, which
contradicts Lemma 11 and proves (17).

To conclude, using (5) and Fubini’s theorem we have

E#{edges crossing 0} ≤ 1
2
E#
{
x ∈ [R] : |M(x)− x| > |x|

}
= 1

2

∫ ∞
−∞

P∗(X > |r|) dr

= E∗X,

so (17) implies E∗X =∞.

Matching from a forest. The following construction will be used in the
proof of Theorem 4. Let U be a countable infinite set, and suppose we are
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given a locally finite forest with vertex set U and one end per tree (that is,
a simple acyclic graph with finite degrees where from each vertex there is
exactly one singly-infinite self-avoiding path). The parent of vertex x is the
vertex y such that edge (x, y) lies on the infinite path from x. If y is the
parent of x then x is a child of y. Suppose we are also given, for each vertex,
a total ordering of its children.

Under the above conditions, the following construction gives a perfect
matching of U . (Similar constructions were used in [6] and [13]). A leaf is
a vertex with no children, and a twig is a vertex which is not a leaf but
whose only children are leaves. Suppose x is a twig, and let x1, x2, . . . , xk be
its ordered children. Match the pairs {x1, x2}, {x3, x4}, . . .. If k is odd, also
match xk to x. Do this for all twigs. Now remove those vertices which have
been matched, together with their incident edges, and repeat the construction
on the remaining graph. Repeat indefinitely.

The above construction clearly gives a partial matching of U . To see that
it is a perfect matching, observe that for any given vertex, at least one of
its finitely many descendants is matched and removed at every stage, so it is
eventually matched itself. (Vertex x is called a descendant of y if y lies on
the infinite path from x.)

Note the additional property that any matched pair were at graph-theore-
tic distance at most 2 in the original forest. This will enable us to derive tail
bounds for the matching from tail bounds on the forest. ♦

Let R be a Poisson process of intensity 1. The minimal spanning
forest F of [R] is the graph obtained from the complete graph on [R] by
deleting every edge which is the longest (in Euclidean distance) in some
cycle. In dimension d = 2 it is known [2, p. 94] that F is almost surely a
locally finite one-ended tree. Now, ordering the children of each vertex x by
Euclidean distance from x (say), and applying the above construction, we
get an isometry-invariant one-color factor matching scheme. This will enable
us to prove Theorem 4 for d = 2. To prove the required tail bound we need
the lemmas below.

Let S := {y ∈ Rd : |y| = 1} be the unit sphere. A cap is a proper subset
of S of the form H = S ∩B(y, r), where y ∈ S. A cone of width w is a set
of the form

V = VH :=
{
αh : h ∈ H and α ∈ (0,∞)

}
,

where H is some cap of diameter w.
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Lemma 12 (Cones). If V = VH is a cone of width 1, then for any x, y ∈ V ,

|x| ≥ |y| implies |x− y| ≤ |x|.

Proof. Let β := |y|/|x|, so that |βx| = |y|, and hence βx, y ∈ |y|H. Then

|x− y| ≤ |x− βx|+ |βx− y| ≤ (1− β)|x|+ diam(|y|H) = |x| − |y|+ |y|.

Lemma 13. In the minimal spanning forest F of a Poisson process R of
intensity 1 on Rd,

P∗(0 has an incident edge of length > r) ≤ C ′e−Cr
d ∀r > 0,

for C,C ′ ∈ (0,∞) depending only on d.

Proof. For distinct x, y ∈ Rd, define a set Sx,y := (V + x) ∩ B(x, |x − y|),
where V is some cone of width 1 such that y ∈ V + x. For red points x and
y, if there exists another red point z ∈ Sx,y then F cannot have an edge from
x to y. This is because |x− z| < |x− y|, while |y − z| ≤ |y − x| by Lemma
12, so {x, y} is the longest edge in the cycle (x, y, z). Hence the probability
in question is at most

P∗
[
R∗
(
V ∩B(0, r)

)
= 0 for some cone V of width 1

]
.

Now let H1, . . . , Hk be a finite subcover of the cover of the unit sphere by
caps of diameter 1/3, and let Vi := VHi

be the associated cones of width 1/3.
Any cone of width 1 must completely contain at least one of the Vi, so the
above probability is at most

P∗
[
R∗
(
Vi ∩B(0, r)

)
= 0 for some i ∈ {1, . . . , k}

]
≤ k P∗

[
R
(
V1 ∩B(0, r)

)
= 0
]
≤ ke−Cr

d

.

Lemma 14. If non-negative random variables Y, Z satisfy E ecY d
< ∞ and

E ecZd
<∞, then E ec′(Y+Z)d <∞ where c′ := 2−dc.

Proof. E ec′(Y+Z)d ≤ E ec(Y ∨Z)d = E[ecY
d ∨ ecZd

] ≤ E ecY d
+ E ecZd

.
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Proof of Theorem 4 (case d = 2). Construct a matching M from the mini-
mum spanning forest F as described above. To prove the tail bound note
that any matched pair are either siblings or a parent and child. Hence if we
write D(x) for the distance from x to its parent in F then |x −M(x)| ≤
D(x) +D(M(x)). Also, Lemma 13 implies that E∗eCD(0)2 <∞ for a certain
constant C > 0. Now defining

T (A,B) :=
∑

x∈[R]∩A:M(x)∈B

eCD(x)2 ,

the mass transport principle (Lemma 8) gives E∗eCD(M∗(0))2 = E∗eCD(0)2 , and
by Lemma 14 we obtain E∗eC′X2 ≤ E∗eC′[D(0)+D(M∗(0))]2 <∞.

Remark. In dimensions d ≥ 3 the minimal spanning forest is believed to
have one end per tree, but this is not proved. Therefore we use a different
forest (see below), which is translation-invariant but not isometry-invariant.
Given sufficient effort, it seems probable that a suitable one-ended isometry-
invariant forest could be constructed, giving an isometry-invariant factor
matching satisfying a similar bound. ♦

Proof of Theorem 4 (case d ≥ 3). Let R be a Poisson process of intensity 1.
As in the proof of Theorem 1(ii), it suffices to give a translation-invariant
factor matching scheme, for then we may obtain an isometry-invariant ran-
domized version by applying a random isometry preserving the origin.

The following construction is inspired by [6]. For z = (z1, z2, . . . , zd) ∈ Rd

we write z := (z2, . . . , zd) ∈ Rd−1. Define the cone V := {z ∈ Rd : z1 > |z|}.
Now for each red point x, let S(x) be the a.s. unique red point in x+ V for
which the first coordinate S(x)1 is least, and put a directed edge from x to
S(x). Let G denote the resulting graph.

Since a.s. the out-degree of each vertex is 1 and there are no oriented
cycles, the graph G is clearly a forest. The mass-transport principle (Lemma
8) shows that, under the Palm measure, the expected in-degree of the origin
is also 1, hence G is locally finite. Furthermore, it is immediate that

E∗e−C|S(0)|d <∞ (18)

for some C = C(d) > 0. We claim that G has one end per tree. Once this is
proved, we can use it to construct a matching as described above (ordering

22



children by distance), and the required tail bound may then be deduced from
(18) in the same way as in the above proof for the case d = 2.

Turning to the proof that G has one end per tree, it suffices to prove
that G a.s. has no backward infinite path (that is, no sequence of vertices
and directed edges · · · → x2 → x1 → x0), for clearly from each vertex
there is exactly one forward infinite path. Call a red point bad if it lies on
some backward infinite path. It is proved in [2] that no translation-invariant
random forest in Rd can have a component with more than 2 ends. Assuming
that bad points exist we shall obtain a contradiction to this result.

Consider the ‘hyperplane’ of cubes L := {Qu : u ∈ Zd, u1 = −1}. If bad
points exist then by invariance and ergodicity there exist two fixed cubes
Qu, Qv ∈ L at distance at least d+ 1 from each other such that the event

A := {Qu and Qv each contain a bad point}

has positive probability. Note that whenever G has a directed path from x
to y then y ∈ x+ V , or equivalently x ∈ y+ (−V ). Hence for any red points
x ∈ Qu and y ∈ Qv, there cannot be a directed path from x to y or from y
to x. Recalling also that all out-degrees equal 1 we deduce that on A there
exist two disjoint backward infinite paths to red points x ∈ Qu and y ∈ Qv.
Also note that the event A is measurable with respect to the restriction of
R to the half-space H− := R− × Rd−1.

Now we may construct an event B of positive probability, measurable
with respect to the restriction of R to the half-space H+ := R+×Rd−1, such
that on B, the forward infinite paths from any red points x ∈ Qu and y ∈ Qv

must coalesce. Specifically, this will hold if a sufficiently large region of H+

is empty except for one red point which lies in
⋂
z∈[(Qu∪Qv)+V ]∩H−(z+V ) (see

Figure 2). Now A and B are independent so P(A∩B) > 0, but on the latter
event, G has a component with at least 3 ends (formed by the backward
paths from the bad points in Qu and Qv together with their joint forward
path). This contradicts the result from [2] noted above.

5 Stable Matching

In this section we prove Theorems 5 and 6 as well as Proposition 9. We start
with some relatively straightforward cases.

Proof of Theorem 5(ii). Call a red point x t-bad if |M(x)−x| > t, and note
that no two t-bad points may be within distance t of each other, for they
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Figure 2: An event B which forces coalescence of paths starting in two given
cubes: the light gray region should be empty while the dark gray region
should contain exactly one red point.

would form an unstable pair. Hence, using (4),

1 ≥ E#
{
t-bad red points in B(0, t

2
)
}

= LB(0, t
2
) · P∗(X > t).

Proof of Theorem 6(ii) (case d = 1). Fix t > 0. We say that a red point x is
t-bad if |M(x)−x| > t. Let W be the set of t-bad red points in the interval
[0, t], and denote the random variables

a = minW ; b = maxW.

We claim that, provided W 6= ∅, every blue point in [a, b] is matched to a red
point in [a, b]. To prove this, suppose on the contrary that x ∈ [a, b] is a blue
point matched outside [a, b]. Without loss of generality suppose M(x) < a.
Then since |M(x)− x| > |a− x| and |M(a)− a| > t > |a− x|, the pair a, x
would be unstable, a contradiction.

Since elements of W are t-bad, they cannot be matched within [a, b] ⊆
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[0, t], so the above claim implies that R[a, b]− B[a, b] ≥ #W . Hence

#W ≤ max
[α,β]⊆[0,t]

(
R[α, β]− B[α, β]

)
≤ max

z∈[0,t]
F (z)− min

z∈[0,t]
F (z),

where F (z) := R[0, z]−B[0, z]. But F is a continuous-time simple symmetric
random walk, so (by e.g. [15, Proposition 13.13 and Theorem 14.6]) taking
the expectation of the above inequality and using (4), we obtain

tP∗(X > t) = E#W ≤ C
√
t

for a fixed constant C ∈ (0,∞).

Proof of Theorem 6(ii) (case d ≥ 2). See Theorem 19 at the end of this sec-
tion.

To prove the lower bounds Theorems 5(i) and 6(i) we need the following
simple properties of stable matchings and Poisson processes. The proofs are
given after the statement of Lemma 18.

Lemma 15 (Stable partial matchings). Let U (respectively, U, V ) be (dis-
joint) subset(s) of Rd, and suppose that U (respectively U ∪ V ) is discrete,
non-equidistant, and has no descending chains. Then there is a unique stable
partial matching of U (respectively between U and V ), and it is produced by
the iterated mutually closest matching algorithm described in the introduc-
tion. In the one-color case, there is at most one unmatched point, while in
the two-color case, all unmatched points are of the same color.

It should be noted that stable marriage problems do not in general have
unique solutions; see [8]. The key to uniqueness in our setting is that pref-
erences are based on distance, and are therefore symmetric. Note also that
some condition on U (or U ∪ V ) is needed in order to guarantee existence
and uniqueness of the stable matching. For example, in the one-color case
with d = 1, the set U = {0}∪{3−n : n ∈ Z+} has no stable partial matching,
while U = {

∑n
k=1 k

−1 : n ∈ Z+} has more than one.

Lemma 16 (Modifications for 1-color stable matching). Let U ⊂ Rd be
a discrete, non-equidistant set with no descending chains, and let m be its
unique stable partial matching.
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(i) If {x, y} ∈ m is a matched pair then m\{{x, y}} is the unique stable
partial matching of U \ {x, y}.

(ii) If z ∈ Rd\U is such that U∪{z} is non-equidistant, and |m(x)−x| <
|z − x| for all x ∈ U , then m is the unique stable partial matching of
U ∪ {z} (in particular, z is unmatched).

Lemma 17 (Monotonicity for 2-color stable matching). Let U, V, {v′} ⊂ Rd

be disjoint sets, and suppose that U ∪ V ∪ {v′} is discrete, non-equidistant,
and has no descending chains. Let m be the stable bipartite partial matching
between U and V , and let m′ be the stable bipartite partial matching between
U and V ∪ {v′}. Then

|u−m′(u)| ≤ |u−m(u)| ∀u ∈ U,

(where as usual |x−m(x)| :=∞ if x is unmatched).

Lemma 17 states that adding an extra blue point makes the matching no
worse for red points. Such results are well-known for finite stable marriage
problems – see e.g. [8, 16].

Lemma 18 (Modifications for Poisson process). Let R be a homogeneous
Poisson process.

(i) Let U be a uniform random point in a set S with LS ∈ (0,∞),
independent of R. The law of the point process R + δU obtained by
adding a point at U is absolutely continuous with respect to the law of
R.

(ii) Let F be a simple point process whose support [F ] is a.s. a random
finite subset of [R]. The law of the process R−F obtained by removing
the points of F is absolutely continuous with respect to the law of R.

Proof of Lemma 15. Consider the iterated mutually closest matching algo-
rithm. Non-equidistance ensures that it is well-defined. We first claim that
every pair matched by the algorithm are matched to each other in every
stable partial matching. This is proved by induction on the stage of the
algorithm: supposing the claim holds for all pairs matched so far, any re-
maining mutually closest pair cannot be matched to points removed earlier
(by the inductive hypothesis) and they cannot be matched further away than
each other (by stability).
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Now consider the set N of points left unmatched by the algorithm. We
must show that these points are unmatched in every stable partial matching.
This is clear if #N ≤ 1. Therefore, suppose that #N ≥ 2 and consider
first the one-color case. Let x0 ∈ N , and let x1 be the closest point to x0 in
N \{x0}, (which exists, by discreteness). Inductively, let xn+1 be the point in
N \{xn} closest to xn. Clearly, |xn−xn+1| ≥ |xn+1−xn+2| for all n ∈ N. Since
there is no descending chain, it follows that there is some first m ∈ N such
that xm+1 = xj with j ∈ {0, 1, . . . ,m− 1}. Because of non-equidistance, we
must have j = m−1. But then xm−1 and xm are mutually closest in N , which
implies that they would have been matched by the algorithm right after all
other points had been removed from B

(
xm−1, |xm−1− xm|

)
∪B

(
xm, |xm−1−

xm|
)

(which would happen after a finite number of stages by discreteness).
This contradicts xm−1, xm ∈ N and shows that #N ≤ 1.

In the two-color case, let NU be the unmatched points in U and let NV

be the unmatched points in V . If NU = ∅, then clearly all points in NV are
unmatched in every stable matching. The case NV = ∅ is similar. If both
NU and NV are nonempty, we choose x0 ∈ NU and inductively let x2n+1 be
the point in NV closest to x2n and let x2n+2 be the point in NU closest to
x2n+1. The argument is then completed as in the one-color case.

Proof of Proposition 9. Apply Lemma 15 and consider the random process
N of unmatched points in the unique stable partial matching - we must show
that [N ] is almost surely empty.

In the one-color case, the lemma implies that #[N ] ≤ 1. But if N
has exactly one point with positive probability then (after conditioning on
this event) its location would be a translation-invariant Rd-valued random
variable, which is impossible.

In the two-color case, the lemma implies that [N ] must be empty, or
consist entirely of red points or entirely of blue points. By ergodicity, one
of these three possibilities must have probability 1. But Lemma 7 implies
that the processes of unmatched red points and unmatched blue points have
equal intensity, so the latter two possibilities are ruled out.

Proof of Lemma 16. By Lemma 15, we need only check that the claimed
matching is stable. In (i) this is immediate, since any unstable pair would
have been unstable in the original matching. Similarly in (ii), the given
condition ensures that z does not form an unstable pair with any x ∈ U .
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Proof of Lemma 17. Suppose on the contrary that for some u ∈ U we have
|u − m′(u)| > |u − m(u)|. In particular m(u) 6= ∞, so write v := m(u) ∈
V . Stability of (u, v) in m′ implies |v − m′(v)| ≤ |v − u|, but m′(v) 6= u
so non-equidistance implies that the previous inequality is strict; we write
u1 := m′(v) ∈ U . Similarly, by stability of (u1, v) in m we have |u1−m(u1)| <
|u1 − v|; write v1 := m(u1) ∈ V . Iterating this argument gives a descending
chain u, v, u1, v1, u2, v2, . . ..

Proof of Lemma 18. (i): It is elementary to check that the Radon-Nikodym
derivative of the laws is p(N − 1)/p(N), where N := R(S), and p(k) is the
probability that N = k.

(ii): Let A be some measurable set such that P(R−F ∈ A) > 0. We need
to show that P(R ∈ A) > 0. Since a.s. [F ] is finite and [R] is discrete, there
is a.s. a finite random set of balls with rational centers and radii such that
[F ] is the intersection of [R] with the union of these balls. Therefore, there
is a deterministic finite union of open balls W such that δ := P(R − F ∈
A, [R]∩W = [F ]) > 0. LetR1 denote the restriction ofR to the complement
of W , and let A1 be the event that P

(
R−F ∈ A, [R]∩W = [F ]

∣∣ R1

)
> δ/2.

Note that P(A1) ≥ δ/2. On the event A1, with positive probability we have
R−F = R1 and therefore R1 ∈ A. But A1 is σ(R1)-measurable, so we must
have R1 ∈ A a.s. on A1. Since R1 and R(W ) are independent, we deduce

P(R ∈ A) ≥ P
(
A1, R(W ) = 0

)
= P(A1)P

(
R(W ) = 0

)
> 0.

We now turn to the proofs of the lower bounds.

Proof of Theorem 5(i). Let M be the one-color stable matching, and con-
sider the random set

H = H(R) := {x ∈ [R] : |x−M(x)| > |x| − 1}. (19)

This is the set of red points that would prefer some red point in the unit
ball B(0, 1) (if one were present in the correct location) over their current
partners. We claim that

P(#H =∞) = 1. (20)

Once this is proved, we obtain the required result as follows, using (5) and
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Fubini’s theorem:

∞ = E#H =

∫
Rd

P∗(X > |x| − 1) dx

=

∫ ∞
0

P∗(X + 1 > t) c td−1 dt

=
c

d
E∗
[
(X + 1)d

]
,

hence E∗Xd =∞.
Returning to the claim (20), suppose on the contrary that H is finite with

positive probability. For each point configuration R, construct a modified
configuration R̂ as follows:

(i) if #H <∞, remove all the points in H ∪ {M(x) : x ∈ H};
(ii) add a uniformly random point in B(0, 1), independently of R.

Using Lemma 18, the law of the random configuration R̂ is absolutely contin-
uous with respect to that of R. Now by Lemma 16, whenever #H(R) <∞,

the stable partial matching of [R̂] has an unmatched point (the one added
in (ii)), hence this happens with positive probability. Absolute continuity
therefore implies that with positive probability the stable partial matching
of [R] has an unmatched point, contradicting Proposition 9.

Proof of Theorem 6(i). Define the random set H exactly as in (19) (now it
is the set of red points which would prefer a blue point in B(0, 1)). We will
prove that P(#H =∞) = 1, whereupon the result follows as in the proof of
Theorem 5(i).

Fix any k < ∞; we will prove that P(#H ≥ k) = 1. Let B′ be obtained
from B by adding k independent uniformly random points in B(0, 1). By
Lemma 18(i), the law of (R,B′) is absolutely continuous with respect to that
of (R,B). Hence, by Proposition 9, almost surely all the k added points
are matched in the stable matching between [R] and [B′]. By Lemma 17, it
follows that the partners of the added points were matched as far away or
further in the stable matching with [B], so these partners lie in H, and thus
#H ≥ k as required.

Remark. As stated in the introduction, Theorem 6 holds also for the stable
matching of heads (red) to tails (blue) on Zd (given some tie-breaking rule).
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In order to adapt the proof of (i) to that setting, we claim that the set H of
red sites v ∈ Zd which would prefer the origin to their current partner (if the
origin was blue) must be infinite. Indeed, if H is finite, then a contradiction
is obtained by considering the configuration in which the sites in H are
recolored blue and the origin is colored blue.

Finally we prove the upper bound for the two-color stable matching in
d ≥ 2.

Theorem 19. In the two-color stable matching of two independent Poisson
processes of intensity 1 in Rd, d ≥ 2, we have

P∗(X > r) ≤ C r−s , (21)

where C = C(d) ∈ (0, 1), and s = s(d) is the unique solution in (0, 1) of the
equation

2ωd

∫ 2

1

(t− 1)d−1 t−s dt =
ωd−1
d− 1

∫ 2

0

(
1− (t/2)2

) d−1
2 t−s dt , (22)

and ωd denotes the (d− 1)-dimensional volume of the unit sphere in Rd.

For d = 2, (22) simplifies to
√
π (2s − 2 s) Γ

(
(2− s)/2

)
= Γ

(
(3− s)/2

)
,

and for general d the integrals can be evaluated in terms of hypergeometric
functions. The numerical values (rounded to the nearest 10−3) of s at d = 2,
3, 10 and 100 are 0.496, 0.449, 0.339 and 0.224, respectively. It is not hard
to see that sd log d stays bounded away from 0 and ∞ as d→∞.

Proof of Theorem 19. Set α(r) := P∗(X > r). Fix some R > 0 and consider
the ball B = B(0, R) of radius R about 0. Set

YR :=
{
x ∈ [R] ∩B : |x−M(x)| > R + |x|

}
,

and similarly

YB :=
{
x ∈ [B] ∩B : |x−M(x)| > R + |x|

}
.

First, observe that if x ∈ YR, then M(x) /∈ B. Next, note that if x ∈ YR,
then x prefers any blue point in B to its partner. Since the corresponding
statement also holds for YB, we have

if YR 6= ∅ then YB = ∅. (23)
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(This is the principal observation on which the proof rests.) Let QB denote
the set of blue points in B that are matched outside of B, and similarly for
QR.

Let Z := R(B) − B(B), and note that #QR − #QB = Z. Therefore,
#YR ≤ #QB + Z, and (23) gives

#YR + #YB ≤ #QB + Z+.

Our bound will follow by taking the expectation of both sides of this in-
equality. Since E#YR = E#YB and E(Z+) ≤ C Rd/2 for some fixed constant
C = Cd (which may depend only on d), we get

2E#YR ≤ C Rd/2 + E#QB . (24)

By (5), it is easy to express the left hand side in terms of α, namely,

E#YR =

∫
B

α(R + |x|) dx

= ωd

∫ R

0

α(R + r) rd−1 dr = ωd

∫ 2R

R

α(r) (r −R)d−1 dr .

(25)

The proof will proceed by expressing E#QB in terms of α and using
(24). Before embarking on the full argument we note the following simplified
version which already gives a power law upper bound on α. If a blue point
in B is matched outside B then the length of its edge is at least its distance
to the boundary of B, hence (5) gives

E#QB ≤
∫
B

α(R− |x|) dx

= ωd

∫ R

0

α(R− r) rd−1 dr = ωd

∫ R

0

α(r) (R− r)d−1 dr .
(26)

Substituting (25) and (26) into (24) and using the fact that α is decreas-
ing yields a bound for α(2R) in terms of α(r) for r ∈ [0, R], and it is
straightforward to deduce (by induction on k) that α(2k) ≤ C ′(2k)−s

′
for

some C ′ = C ′(d) ∈ (0,∞) and s′ = s′(d) ∈ (0, 1).
In order to get a better power we will instead use an exact expression

for E#QB, and analyze the resulting inequality more carefully. Denote the
unit sphere Sd−1 := {z ∈ Rd : |z| = 1}. The intensity of the process of
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pairs (x, u) ∈ Rd × Sd−1 such that x ∈ [B], |x −M(x)| > r and (M(x) −
x)/|M(x) − x| = u is precisely α(r)/ωd. (That is, the expected number of
such pairs in any set A ⊂ Rd × Sd−1 is α(r)/ωd times the volume of A.) For
x ∈ B and u ∈ Sd−1, let q(x, u) := inf{t ≥ 0 : x + t u /∈ B}, and fix some
u0 ∈ Sd−1. Then

E#QB =
1

ωd

∫
Sd−1

∫
B

α
(
q(x, u)

)
dx du =

∫
B

α
(
q(x, u0)

)
dx , (27)

where the last equality is a consequence of rotational symmetry. Let L denote
the orthogonal projection onto the subspace of Rd orthogonal to u0; that is,
Lz = z − (z · u0)u0. For x ∈ B define f(x) = Lx + q(x, u0)u0. Since
Lf(x) = Lx and f(x+ t u0) = f(x)− t u0, it follows by differentiation that
f is measure preserving. This allows us to use the substitution z = f(x) and
write

E#QB =

∫
f(B)

α
(
z · u0

)
dz =

∫ 2R

0

µd−1
{
z ∈ f(B) : z · u0 = r

}
α(r) dr ,

where µd−1 is (d − 1)-dimensional Lebesgue measure and the last equality
follows by Fubini. Now,

µd−1
{
z ∈ f(B) : z · u0 = r

}
= µd−1

{
Lx : x ∈ B, q(x, u0) = r

}
.

Note that the set {Lx : x ∈ B, q(x, u0) = r
}

is precisely the set of sites z ∈
LRd such that z − (r/2)u0 ∈ B, which is

{
z ∈ LRd : |z| <

√
R2 − (r/2)2

}
.

The (d−1)-volume of this set is just
(
R2− (r/2)2

)(d−1)/2
times the volume of

the (d−1)-dimensional unit ball. Since the volume of the (d−1)-dimensional
unit ball is ωd−1/(d− 1), we get

E#QB =
ωd−1
d− 1

∫ 2R

0

(
R2 − (r/2)2

)(d−1)/2
α(r) dr . (28)

Now, taking into account (24), (25) and (28), we obtain∫ ∞
0

g(r/R)α(r) dr ≤ C R1−d/2,

where

g(t) := 2ωd 1[1,2](t) (t− 1)d−1 − ωd−1
d− 1

1[0,2](t)
(
1− (t/2)2

) d−1
2 .
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This bound will be useful when R is large. For R small, we use the trivial
estimate∫ ∞

0

g(r/R)α(r) dr ≤
∫ ∞
0

g(r/R) dr ≤
∫ 2R

0

‖g‖∞ dr = 2R ‖g‖∞ .

Combining these two estimates, we get∫ ∞
0

g(r/R)α(r) dr ≤ min{C R1−d/2, 2R ‖g‖∞} . (29)

We will get our desired bound on α by taking an appropriate average of (29)
with respect to R.

Note that the set of s satisfying
∫∞
0
g(t) t−s dt = 0 is precisely the set of

s satisfying (22). Observe that g(t) is supported on [0, 2] and is continuous
and monotone increasing there. Moreover, g(0) < 0 < g(2). Therefore,
there is some s = sd ∈ (−∞, 1) such that

∫∞
0
g(t) t−s dt = 0. We claim

that s is unique. Indeed, let s′ < s and let t0 be the unique solution of
g(t) = 0 in (0, 2). Then ts

′−s
0 t−s

′
< t−s precisely when t < t0. Therefore

ts
′−s
0

∫∞
0
g(t) t−s

′
dt >

∫∞
0
g(t) t−s dt = 0, proving uniqueness. Next, we claim

that s > 0. Observe that if we replace α by 1 we get the volume of B (that is,
Rd ωd/d) in (25) and (27). The algebraic manipulations within and following
these equalities are valid for any measurable bounded function in place of α.
Therefore

∫∞
0
g(t) dt = µd(B(0, 1)) = ωd/d > 0, which implies s > 0.

Since
∫∞
0
g(t) t−s dt = 0, a change of variables t = r/ρ gives∫ ∞

0

g(r/ρ) ρs−2 dρ = 0 . (30)

Set

GR(r) :=

∫ R

0

g(r/ρ) ρs−2 dρ .

We claim that GR(r) ≥ 0 for all r > 0, and that

C0 := inf
{
GR(r)R1−s : R > 0, r ∈ [R/2, R]

}
> 0 .

As before, let t0 be the unique solution of g(t) = 0 in (0, 2). If r/R ≥ t0, then
g(r/ρ) ≥ 0 for ρ < R, and hence GR(r) ≥ 0. On the other hand, if r/R < t0,
then g(r/ρ) ≤ 0 for all ρ > R and (30) gives GR(r) = −

∫∞
R
g(r/ρ) ρs−2 dρ ≥

0. Since g(t) > 0 for t ∈ (t0, 2) and g(t) < 0 for t ∈ (0, t0), the above reasoning

33



actually gives GR(r) > 0 for r ∈ (0, 2R). Since GR is continuous, this implies
infr∈[1/2,1]G1(r) > 0. A change of variables gives GR(r) = Rs−1G1(r/R),
which now proves C0 > 0.

From the monotonicity of α, the definition of C0 and from GR(r) ≥ 0, we
now get

C0R
s α(R)/2 ≤ C0R

s−1
∫ R

R/2

α(r) dr ≤
∫ ∞
0

GR(r)α(r) dr . (31)

Note that∫ R

0

∫ ∞
0

ρs−2 |g(r/ρ)|α(r) dr dρ ≤
∫ R

0

∫ ∞
0

ρs−2 ‖g‖∞ 1r≤2ρ dr dρ <∞ .

Therefore, Fubini and (29) give∫ ∞
0

GR(r)α(r) dr =

∫ R

0

(
ρs−2

∫ ∞
0

g(r/ρ)α(r) dr

)
dρ

≤
∫ R

0

ρs−2 min{C ρ1−d/2, 2 ρ ‖g‖∞} dρ

≤
∫ R

1

C ρs−1−d/2 dρ+ 2 ‖g‖∞
∫ 1

0

ρs−1 dρ .

(32)

Since the right hand side is bounded in R (this is where we use d > 1), this
and (31) imply (21).

Remarks. In order to adapt the proof of Theorem 19 to the stable alloca-
tion of Lebesgue to Poisson, we replace #YR with the volume of sites z ∈ B
whose Poisson point is at distance greater than R+ |z|, and replace #YB with
the sum over Poisson points x ∈ B of the volume of x’s territory that is at
distance greater than R+ |x|. The mass transport principle easily shows that
these two quantities have the same expectation. A similar remark applies to
#QR and #QB. This allows us to obtain the analog of (24).

To adapt the proof to the setting of a stable matching of heads to tails
in Zd, we apply a uniform random translation in [0, 1)d, and then apply a
random isometry preserving the origin. Then the law of the matching is
invariant under isometries of Rd, and the above proof applies.
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Open Problems

(i) For the two-color stable matching of two independent Poisson processes,
what is the correct power law for the tail behavior of X in dimensions
d ≥ 2? We conjecture that E∗Xα <∞ if and only if α < d/2.

(ii) Does there exist a translation-invariant matching of two independent
Poisson processes in R2 such that the line segments connecting matched
pairs do not cross?
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