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Abstract

We prove the existence of recurrent initial configurations for the
rotor walk on many graphs, including Zd, and planar graphs with lo-
cally finite embeddings. We also prove that recurrence and transience
of rotor walks are invariant under changes in the starting vertex and
finite changes in the initial configuration.

1 Introduction

The rotor walk is a derandomized variant of random walk on a graph G,
defined as follows. To each vertex of G we assign a fixed cyclic order of its
neighbours. This collection of orders is called the rotor mechanism. At
each vertex there is a rotor: an arrow which can point to any neighbour. An
assignment of directions to all the rotors is called a rotor configuration.
Starting from some rotor configuration, a particle is located at some vertex,
and the particle location and rotor configuration evolve together in discrete
time as follows. At each time step, the rotor at the particle’s current location
is incremented to point to the next neighbour in the cyclic order, and then
the particle moves to this new neighbour. The rotor walk is obtained by
repeatedly applying this rule.

We will assume throughout that G is an infinite, connected, simple, undi-
rected graph with all degrees finite. Given a rotor mechanism, an initial
rotor configuration, and an initial particle location, it is then easy to see
that the rotor walk either visits each vertex infinitely many times, or visits
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each vertex finitely many times (see e.g. [6, Lemma 6]). We call these two
cases recurrent and transient respectively.

In many settings there are striking similarities between the behaviour of
the rotor walk and the expected behaviour of random walk on the same graph;
see e.g. [2, 3, 4, 6, 8]. However, with regard to recurrence and transience there
can also be differences. For instance, on any G (even a recurrent graph) it
is easy to find an initial rotor configuration that is transient (indeed, we
can arrange for the particle to trace any self-avoiding path). In the other
direction, it was shown in [7] that recurrent initial rotor configurations exist
on the infinite binary tree. These matters have been investigated further on
trees in [1, 7], but much less is known for more general graphs. Our goal
is this article is to prove the existence of recurrent rotor configurations in a
broad range of settings, including many where the random walk is transient.

We will also show that recurrence and transience of the rotor walk do
not depend on the starting vertex. Therefore we may refer to an initial rotor
configuration as recurrent or transient without specifying the starting vertex.

Theorem 1. Fix a graph, a rotor mechanism and an initial rotor configura-
tion. The rotor walk is either recurrent for every starting vertex, or transient
for every starting vertex.

Let Zd denote the graph with vertex set Zd and an edge between each
pair of vertices at Euclidean distance 1.

Theorem 2. For any d ≥ 1 and any rotor mechanism on Zd, there exists a
recurrent rotor configuration.

An example was given in [6] of a recurrent rotor configuration on Z2. For
all d ≥ 3, Theorem 2 provides the first proof of the existence of a recurrent
configuration for a translation-invariant rotor mechanism. This answers a
question posed by Jim Propp in 2003 (personal communication), and stated
as an open problem in [6] and [7]. Our proof is strongly motivated by a recent
work of Reddy [9], in which it is argued on the basis of simulation evidence
that a certain explicit rotor configuration on Z3 is recurrent. Our proof also
includes a simple explicit rotor configuration.

Our construction can be generalized to many other settings, and in partic-
ular we have the following. A planar embedding of a planar graph is called
locally finite if every bounded region of the plane contains only finitely
many vertices. (There exist planar graphs with no locally finite embedding,
such as Z2 with a singly-infinite path attached to every vertex.)
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Theorem 3. For a planar graph with a locally finite planar embedding, and
a rotor mechanism in which each rotor points to the neighbours in clockwise
or anticlockwise order (possibly with different directions at different vertices),
there exists a recurrent rotor configuration.

Theorem 4. For any graph, there exists a rotor mechanism that admits a
recurrent rotor configuration.

For some graphs including Zd, we can also give recurrent configurations
for which the behaviour of the rotor walk is extremely regular, as follows.
For x ∈ Zd, define

α(x) :=

{
1 if |x1|, . . . , |xd| have a unique maximum;

0 otherwise.

Theorem 5. For any rotor mechanism on Zd, there exists a recurrent rotor
configuration such that for the rotor walk started at 0, just before the (k+1)st
traversal from 0 to (1, 0, . . . , 0), vertex x has been entered exactly[

2d(k − ∥x∥∞) + α(x)
]+

times.

For the reader’s convenience we present an explicit family of configura-
tions on Zd satisfying the conclusion of Theorem 5 (see Section 4 for a more
general result). Let x ∈ Zd. If α(x) = 1, set the rotor at x so that it will next
point to the unique neighbour y such that ∥y∥∞ < ∥x∥∞. If α(x) = 0 and
x ̸= 0, let the rotor at x point towards any neighbour y with ∥y∥∞ < ∥x∥∞.
Set the rotor at 0 to next point towards (1, 0, . . . , 0).

2 Invariance

In this section we prove Theorem 1, and a corollary thereof. These results will
not be needed for the proofs of Theorems 2–5. The proof of Theorem 1 uses
the Abelian property of the rotor walk. We will use a truncation argument
in order to apply a version of the Abelian property for finite graphs proved
in [5]. An alternative approach would be to derive a version of the Abelian
property that holds for transfinite-time walks on infinite graphs. Write dx
for the degree of vertex x.
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Proof of Theorem 1. It is clearly sufficient to prove that if a rotor configura-
tion is recurrent for the rotor walk started at some vertex x then it is also
recurrent for the walk started at any neighbour y of x. For any m ≥ 0, we
show that the rotor walk started at y visits x at least m times.

Let S be the finite set of vertices visited by the rotor walk started at x
until it has made dx +m returns to x. Let F be the subgraph of G induced
by S, modified as follows: add a sink vertex z, and replace each edge of G
leaving S by a directed edge to z; also split x into two vertices x+ and x−,
and split each edge incident to x into a directed edge from x+ and a directed
edge to the sink x−. By the Abelian property, [5, Lemma 3.9], if we start
dx + m rotor particles at x+, and let them perform rotor walks until they
reach the set of sinks {z, x−}, then they all in fact reach x−, regardless of
the order in which they move.

Start dx +m particles at x+ and move them in F in the following order.
First, let dx particles each take one step. This leaves the rotor configuration
unchanged, and one particle at each neighbour of x (including y). Now let
the particle at y perform rotor walk. It will follow exactly the trajectory of
the rotor walk in G started at y. Each time it is absorbed at x−, continue
with one of the m particles remaining at x+. It follows that the rotor walk
from y in G visits x at least m times before leaving S.

One consequence of Theorem 1 is that recurrence and transience are also
insensitive to local changes in the configuration.

Corollary 6. Fix a graph and a rotor mechanism. If two rotor configurations
differ only at finitely many vertices, then they are either both recurrent or both
transient.

Proof. It suffices to consider the case of two rotor configurations r and r′

that differ only at a single vertex x, at which the rotor is incremented once
in r′ compared with r. Suppose that r is recurrent, and start a rotor walk
at x. At the first step, the rotor configuration becomes r′, and the particle
moves to a neighbour y, say. Hence the rotor walk started at y is recurrent
for r′, i.e. r′ is recurrent.
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3 Recurrent configurations

Theorems 2–4 are consequences of the more general result below. For a set
of vertices S, let ∂S denote its outer vertex-boundary:

∂S := {x ∈ SC : x has a neighbour in S}.

We say that S has reflecting boundary (for a given rotor mechanism and
initial rotor configuration) if for every vertex y in ∂S, the rotor at y will
send the particle to each of y’s neighbours in S before sending it to any other
neighbour of y.

Proposition 7. If for some rotor configuration on a graph G, every finite
set of vertices is a subset of some finite set with reflecting boundary, then the
rotor walk starting from any vertex is recurrent.

To prove the above result, it will sometimes be convenient to identify G
with the directed graph in which each undirected edge is replaced with two
directed edges, one in each direction. We say that the rotor walk traverses
the directed edge (x, y) when the particle makes a step from vertex x to
vertex y.

Lemma 8. If a rotor walk started at x traverses some directed edge twice,
then the first directed edge to be traversed twice is from x. In particular such
a walk has returned to x.

Proof. Let (y, z) be the first directed edge to be traversed twice. At that
time y has sent the particle to all other neighbours exactly once, thus y has
emitted the particle dy + 1 times. Since no other edge has been traversed
twice, y has received the particle at most dy times. Thus y = x.

Lemma 9. If S is a set with reflecting boundary, then the rotor walk started
at a vertex x ∈ S will return to x before leaving S ∪ ∂S.

Proof. We prove the stronger statement that the walk will return to x before
making any step from ∂S to SC . Consider the first such step, from some
y ∈ ∂S to some z ̸∈ S. At this time, by the definition of reflecting boundary,
y has previously sent the particle to each of its neighbours in S. However,
by our assumption it has received the particle only from its neighbours in
S, therefore it must have received it twice from some such neighbour. Now
apply Lemma 8.
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Proof of Proposition 7. Suppose the particle started at x, and is currently
at x, and let A be the (finite) set of vertices that have been visited. Then
A ⊆ S for some S which had reflecting boundary in the initial rotor configu-
ration. Since ∂S has not yet been visited, S still has reflecting boundary. By
Lemma 9, the walk will return again to x (before leaving S ∪ ∂S). Iterating
this shows that the walk is recurrent.

Proof of Theorem 2. By Proposition 7, it suffices to choose an initial rotor
configuration so that every cube of the form [−n, n]d (n = 0, 1, 2, . . . ) has
reflecting boundary. Since each vertex z of ∂([−n, n]d) has only one neighbour
y in [−n, n]d, this is achieved by setting the rotor at z so that it will next
point to y. Since the boundaries of different cubes are disjoint, this can be
done for all z and n.

Proof of Theorem 4. Let S0 be any finite non-empty set of vertices, and con-
struct S1, S2, . . . inductively by Si+1 := Si∪∂Si. By Proposition 7, it suffices
to choose the rotor mechanism and configuration so that each Si has re-
flecting boundary. This is clearly possible, since the sets ∂S0, ∂S1, . . . are
disjoint.

To prove Theorem 3, we need a lemma about planar graphs. Given a
planar embedding of a planar graph, the edges incident to a given vertex fall
in some cyclic order around it. We say that a set of vertices S is pincerless
if for every x ∈ ∂S, either all neighbours of x lie in S, or the incident edges
joining x to S lie in one contiguous interval in the cyclic order around x.

Lemma 10. Let G be an infinite, connected, planar, simple graph with all
degrees finite, and with a locally finite planar embedding. Any finite set of
vertices is a subset of some finite pincerless set.

Proof of Lemma 10. Let A be a finite set; we will show that it is a subset of
some finite pincerless B. By enlarging A if necessary, we may assume that
A is connected (i.e. it induces a connected subgraph of G).

Consider any x ∈ ∂A. Each neighbour of x lies either in A, or in a finite or
an infinite component of (A ∪ {x})C . We call the three types A-neighbours,
F -neighbours, and I-neighbours, respectively. Note that there is at least
one A-neighbour. We claim that it is impossible for two A-neighbours a, a′

and two I-neighbours i, i′ to alternate in the cyclic order of neighbours of
x (i.e. to occur in the order aia′i′ when we delete all other neighbours from
the order). This follows from planarity and local finiteness, because a and
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a′ are connected by a path in A(̸∋ x), while i and i′ are each connected
to infinity off A ∪ {x}. (More formally, fix a simple path in A from a to
a′, and let C be the curve formed by the embedding of this path together
with the edges (x, a) and (x, a′). The Jordan curve theorem states that the
complement of C has two components: a bounded interior and an unbounded
exterior, with C being the boundary of each. The alternation assumption
at x implies that exactly one of (x, i), (x, i′), say (x, i), lies in the interior.
By planarity, the component of (A ∪ {x})C containing i must also lie in the
interior, contradicting local finiteness.) Therefore, there exists some interval
in the cyclic order of neighbours of x that contains all the A-neighbours and
no I-neighbours. Let Jx be the unique minimal such interval, if there is at
least one I-neighbour, and otherwise the set of all x’s neighbours. Define Dx

to be the union of all the finite components of (A ∪ {x})C corresponding to
F -neighbours in Jx. Define

B := A ∪
∪

x∈∂A

Dx.

The set B is clearly finite, and we must check that it is pincerless. First,
we claim that if a vertex z is adjacent to some vertex in Dy for some y ∈ ∂A
with y ̸= z, then z ∈ B. This follows because either z ∈ A ⊆ B, or
z ∈ (A ∪ {y})C , in which case z lies in the same component of the latter
set as does its neighbour in Dy, so since Dy is a union of such components,
z ∈ Dy ⊆ B.

Now consider any x ∈ ∂B. We must have x ∈ ∂A, otherwise the above
claim would imply x ∈ B. Now by the definition of Dx, all of x’s neighbours
in the interval Jx lie in B. Therefore to check the pincerless condition at x
it suffices to show that no neighbour of x not in Jx lies in B \ A. By the
definition of B, such a neighbour would lie in Dy for some y ̸= x, and hence
by the claim again we would have x ∈ B, a contradiction.

Proof of Theorem 3. Let S0 be any finite non-empty set of vertices, and de-
fine S1, S2, . . . inductively by taking Si+1 to be a finite pincerless set con-
taining Si ∪ ∂Si, by Lemma 10. For i ≥ 1, since Si is pincerless, and the
rotors rotate clockwise or anticlockwise, the rotors in ∂Si can be given initial
directions so that Si has reflecting boundary. Since the ∂Si are disjoint, this
can be done for all i ≥ 1 simultaneously.
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4 Exact number of visits

We now turn to Theorem 5, which is a consequence of the more general result
below. Given a rotor configuration and some set of vertices U ⊆ V (G), we
associate a directed graph with vertex set V , and a directed edge from x to
y whenever x ∈ U and the rotor at x points to y.

Proposition 11. Let S0, S1, . . . be finite sets such that S0 = {a}, and Si ∪
∂Si ⊆ Si+1 for all i. Suppose that in the initial rotor configuration, for each
i ≥ 0:

(i) Si has reflecting boundary, and

(ii) the rotors at vertices of Si+1 \ (Si ∪ ∂Si) form a directed forest pointing
towards Si ∪ ∂Si.

Consider the rotor walk started at a, and let b be the next vertex it visits.
Then for every k ≥ 1, in the time interval from the kth to the (k + 1)st
traversal from a to b (inclusive and exclusive respectively), the rotor walk
traverses each edge incident to Sk exactly once in each direction, and no
other edges.

Proof. By a unicycle rooted at x we mean a directed graph comprising a
single oriented cycle passing through vertex x, together with a collection of
directed trees rooted on the cycle and pointing towards it. We will use the
following fact about the rotor walk on a finite undirected graph (or indeed
an Eulerian directed graph); see e.g. [5, Lemma 4.9]. Starting from any rotor
configuration that forms a unicycle rooted at the current particle location, if
2m rotor steps are performed, where m is the number of edges of the graph,
then each edge is traversed exactly once in each direction, and the rotors and
particle finish in their initial positions.

The rotor walk is recurrent by Proposition 7. Let tk be the time just
before the (k + 1)st traversal from a to b, so t0 = 0, and at time tk the
particle is at a. We will prove by induction that for all k ≥ 1: at time tk,
no vertex outside Sk has been visited, and the rotors in Sk form a unicycle
rooted at a. In the process of proving this we will establish the claim of the
proposition.

First consider the time period from t0 to t1. Since S0 = {a} has reflecting
boundary, the particle simply traverses each edge incident to a in each direc-
tion, so the claim of the proposition holds for k = 0. At time t1, the rotors
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of ∂S0 all point towards a, so the rotors of S0 ∪ ∂S0 form a unicycle rooted
at a. Since the vertices of S1 \ (S0∪∂S0) have not been visited, condition (ii)
of the proposition thus implies that the rotors of S1 form a unicycle rooted
at a, establishing the inductive hypothesis for k = 1.

Now suppose the inductive hypothesis holds for some k ≥ 1. Consider
the finite subgraph Fk of G comprising all edges incident to Sk, with vertex
set Sk ∪ ∂Sk. Consider a rotor configuration on Fk given as follows. Let the
vertices in Sk inherit their positions from G at time tk. Recalling that Sk

has reflecting boundary in G, fix the rotor at each y ∈ ∂Sk so that it will
next send the particle to each of y’s neighbours in Sk, in the same order as
in G; thus, the rotor should initially point to the last of these neighbours.
Since the rotors of Sk form a unicycle rooted at a, the same applies to Fk.
Therefore, running the rotor walk on Fk, started at a, until just before the
second traversal from a to b results in each edge of Fk being traversed once
in each direction, and the same final rotor configuration. Since the rotors in
∂Sk have only sent the particle towards Sk, the behaviour of the walk on G
over this time interval is identical. Hence the claim of the proposition holds
for k. At time tk+1, the rotors in Sk ∪ ∂Sk form a unicycle rooted at a, and
condition (ii) again implies that the same holds when all rotors in Sk+1 are
included, establishing the inductive hypothesis for k + 1.

Proof of Theorem 5. We apply Proposition 11, with Si = [−i, i]d. The
boundary ∂Si consists precisely of those vertices x of Si+1 \ Si that have
α(x) = 1 (i.e. those on (d − 1)-dimensional faces of Si+1 \ Si). We set the
rotors at these vertices to point next towards Si, and those of Si+1 \(Si∪∂Si)
to form a forest pointing towards Si∪∂Si, as required. By Proposition 11, be-
tween times tk and tk+1, each vertex of Sk is visited 2d times, and each vertex
of ∂Sk is visited once. Summing over k gives the claimed expression.

Open Questions

(i) Do there exist a graph and rotor mechanism for which every initial
rotor configuration is transient?

(ii) While Theorem 5 provides a detailed description of the behaviour of
certain recurrent rotor configurations, some simple transient examples
remain mysterious. On Z2, let each rotor initially point East and rotate
anticlockwise. Start a rotor walk at 0, and restart it at 0 after each
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escape to infinity. What is the asymptotic growth rate of the number
of escapes to infinity prior to the nth visit to 0, as n → ∞? (By a
result of Schramm, [6, Theorem 10], it is o(n)).
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[6] A. E. Holroyd and J. Propp. Rotor walks and Markov chains. In M.
Lladser et al., editor, Algorithmic Probability and Combinatorics, volume
520 of Contemporary Mathematics, pages 105–125. Amer. Math. Soc.,
2010.

[7] I. Landau and L. Levine. The rotor-router model on regular trees. J.
Combin. Theory Ser. A, 116(2):421–433, 2009.

[8] L. Levine and Y. Peres. Strong spherical asymptotics for rotor-router
aggregation and the divisible sandpile. Potential Analysis, 30(1):1–27,
2009, arXiv:0704.0688.

[9] T. R. Reddy A. A recurrent rotor-router configuration in Z3. 2010,
arXiv:1005.3962. Preprint.

10



Omer Angel: angel at math.ubc.ca

Department of Mathematics, University of British Columbia, Vancouver BC
V6T 1Z2, Canada

Alexander E. Holroyd: holroyd at microsoft.com

Microsoft Research, 1 Microsoft Way, Redmond WA 98052, USA

11


