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Abstract

We consider a percolation configuration on a general lattice in which
edges are included independently with probability p. We study the rigidity
properties of the resulting configuration, in the sense of generic rigidity in d

dimensions. We give a mathematically rigorous treatment of the problem,
starting with a definition of an infinite rigid component. We prove that for
a broad class of lattices, there exists an infinite rigid component for some
p strictly below unity. For the particular case of two-dimensional rigidity
on the two-dimensional triangular lattice, we prove firstly that the critical
probability for rigidity percolation lies strictly above that for connectivity
percolation, and secondly that the infinite rigid component (when it exists)
is unique for all but countably many values of p. We conjecture that this
uniqueness in fact holds for all p. Some of our arguments could be applied
to two-dimensional lattices in more generality.

1 Introduction

We consider a ‘percolation model’; that is, starting with an infinite graph having
some regular structure (a ‘lattice’), we delete some of the edges at random, while
retaining the others. In the case which we shall consider, individual edges are
retained independently of each other, each with probability p. Questions relating
to the connectivity properties of the resulting graph have been studied extensively
(see [5], [6]). In particular, it is known that (under a wide range of conditions)
there exists a critical probability pc, satisfying 0 < pc < 1, such that for p > pc

there is almost surely a unique infinite connected component, while for p < pc

Key words: rigidity percolation, graph rigidity, percolation, enhancements, critical points,
infinite components, uniqueness.

AMS subject classifications: Primary 60K35; Secondary 82B43, 05C10.
Address of author: Statistical Laboratory, University of Cambridge, 16 Mill Lane, Cam-

bridge, CB2 1SB, United Kingdom. Email: holroyd@statslab.cam.ac.uk.

1



there is almost surely no infinite connected component. The most elegant proof
of the uniqueness of the infinite connected component may be found in [2].

We shall consider a somewhat different problem. Given a percolation model,
we regard the retained edges as solid bars, which are able to pivot freely at the
vertices. Our aim is to study the rigidity properties of the resulting structure.
The questions which arise have important applications in physics, and the subject
has been approached in the physics literature by means of (partly) non-rigorous
arguments and numerical simulations. See [8] for the results of an extensive and
innovative simulation study, together with a summary of physical applications
and references to previous studies. The basic application is to the behaviour
of materials, and in particular glasses; the retained edges represent chemical
bonds between atoms. Our aim here is to approach the subject from a rigorous
mathematical standpoint.

One of the necessary steps in a mathematical treatment of the problem is
to formulate a precise definition of rigidity. In particular, we shall see that the
rigidity of a graph may depend on the particular way in which it is embedded
in Euclidean space. However, it has been shown (see [3],[4]) that for ‘almost
all’ embeddings of a particular finite graph, the rigidity properties are identical,
and this gives rise to a definition of ‘generic rigidity’ for abstract graphs. We
shall restrict our attention to generic rigidity. (This is also the approach taken
in [8]). This restriction makes the concept of rigidity easier to deal with from
a mathematical point of view, and it is also regarded as providing a realistic
physical model of ‘glassy’ materials. It should be noted that the subject of graph
rigidity is of interest in itself from a combinatorial point of view, and we shall
make some use of results from this area. The most important reference in this
context is [4].

The main results presented here are as follows. Starting from the definition of
generic rigidity for finite graphs, we formulate a definition of rigidity for infinite
graphs, and use this to define rigidity percolation. We prove that for a broad class
of lattices, the rigidity critical probability lies strictly below unity (Theorem 4.1).
In the subsequent sections we restrict our attention to the particular case of two-
dimensional generic rigidity percolation on the two-dimensional triangular lattice
(as in [8]), although it is believed that our techniques could be applied to other
lattices. For the triangular lattice we prove firstly that the rigidity critical prob-
ability lies strictly above the connectivity critical probability (Theorem 7.1), and
secondly that for all p lying outside a particular (perhaps empty) countable set,
the infinite rigid component (when it exists) is unique (Theorem 8.1). Our proof
of the strict inequality of critical probabilities confirms some of the numerical
findings of [8] (for example), where the rigidity critical probability is estimated
to be 0.66020±0.0003; the connectivity critical probability for the triangular lat-
tice is known to be 2 sin(π/18) = 0.34730 · · ·. The uniqueness of the infinite rigid
component is sometimes implicitly assumed in the physics literature, although it
does not appear to have been mentioned explicitly, perhaps partly because there
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has not previously been any explicit definition of an infinite rigid component.
The paper is organised as follows. In Section 2 we present the concept of

generic rigidity of finite graphs, and give some standard results. In Section 3 we
extend the definition of rigidity to infinite graphs, and discuss rigidity of ‘lattices’.
In Section 4 we define rigidity percolation and derive some basic results which are
valid for a wide range of lattices and in an arbitrary number of dimensions. The
remaining sections are devoted to the study of 2-dimensional rigidity percolation
on the triangular latttice. In Section 5 we state and discuss our main results.
In Section 6 we give some further results on rigidity which will be needed, and
finally in Sections 7 and 8 we give proofs of the two main results.

2 Rigidity of finite graphs

In this section we define the concept of rigidity for an embedding of a graph in
d dimensions, and describe how this may be used to define generic rigidity in d
dimensions. This material will be treated fairly briefly. For a full account see, for
example, [4]. See also Section 2 of [7] for a useful summary of generic rigidity.

Our approach to graph theory will be slightly unconventional, since it will
be convenient to regard a graph simply as a set of edges rather than as a pair
(V,E). For any set A, we write P(A) for the set of all subsets of A (the power
set), and A(r) for the set of all subsets of A of size r (where r ∈ N). Given an
underlying set V (which we will regard as a set of vertices), we refer to V (2) as
the set of edges on V. By a graph we mean any non-empty subset of V (2), and
by a subgraph we mean a non-empty subset of a graph. We define the vertex
set of a graph E to be

V (E) =
⋃

e∈E

e,

and for a graph E and a set of vertices U ⊆ V (E) we define

E(U) = {{x, y} ∈ E : x, y ∈ U}.

Given a graph E we write ∆E(·, ·) for graph-theoretic distance between pairs of
vertices in V (E). We shall sometimes say that a graph E ‘contains’ a vertex x
to mean that x ∈ V (E).

Let E be a finite graph. An embedding of E in d dimensions is an injective
mapping

r : V (E) → Rd.

A framework (E, r) is a graph together with an embedding.
A motion of a framework (E, r) is a differentiable family of embeddings

(r(t) : t ∈ [0, 1]) of E (in some fixed number of dimensions) including r which
preserves all edges lengths; that is, for every {x, y} ∈ E, ‖r(t)(x) − r(t)(y)‖ is
constant in t (where ‖ · ‖ is the Euclidean norm on Rd). A motion is a rigid
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motion if this holds for every pair x, y ∈ V (E). A framework is rigid if all its
motions are rigid motions.

The above definition of rigidity depends on the embedding r as well as on
the graph E. However, we may define rigidity (in d dimensions) for an abstract
graph via the concept of generic embeddings, as follows. We say an embedding r
is generic if the sequence of coordinates (r(x)i : x ∈ V (E), 1 ≤ i ≤ d) contains
no repetitions, and the corresponding set C = {r(x)i : x ∈ V (E), 1 ≤ i ≤
d} is algebraically independent over the rationals (that is, any relation of the
form q1(z

α1,1

1 · · · zα1,n

n ) + · · · + qm(z
αm,1

1 · · · zαm,n

n ) = 0 where q1, . . . , qm ∈ Q and
α1,1, α1,2 . . . , αm,n ∈ {0, 1, . . .} which is satisfied by some z1, . . . , zn ∈ C must be
an ‘identity’ satisfied by any z1, . . . , zn ∈ R). The idea of this definition is that
a generic embedding cannot have any ‘special symmetries’. In fact the above
condition is stronger than that which is actually required; for more details see
[3] and [4]. Note that (with respect to Lebesgue measure on Rd|V (E)|), almost all
embeddings are generic.

The following result is essentially due to Gluck, [3]. For further details see [4].

Theorem 2.1 For any given finite graph E and any fixed d ≥ 1, either all
generic embeddings of E are rigid, or all generic embeddings of E are not rigid.

We say a graph is generically rigid in d dimensions, or simply d-rigid,
if any (all) of its generic embeddings in d dimensions are rigid.

We shall now state, without proof, a number of standard results about d-
rigidity. For proofs, see for example [4]. In all the immediately following propo-
sitions we assume that all the graphs mentioned are finite.

Proposition 2.2 A graph is 1-rigid if and only if it is connected.

Proposition 2.3 For any d > 1, A d-rigid graph is (d − 1)-rigid. (Thus, in
particular, for any d ≥ 1, a d-rigid graph is connected).

Proposition 2.4 If A and B are d-rigid graphs and |V (A) ∩ V (B)| ≥ d, then
A ∪ B is d-rigid.

Proposition 2.4 expresses an important property of rigidity which we shall
use repeatedly: if we join two d-rigid graphs together by identifying d vertices
of one with d vertices of the other, the resulting graph is d-rigid. One possible
proof depends on the fact that the only ‘small’ isomorphism of Rd which fixes d
generically embedded points is the identity. We shall also give a simple proof in
the case d = 2 (Proposition 6.7) assuming the combinatorial characterisation of
2-rigidity afforded by Laman’s Theorem (Theorem 6.3).

Proposition 2.5 If A is a d-rigid graph with |V (A)| ≥ d then |A| ≥ d|V (A)| −
d(d+ 1)/2.
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Proposition 2.5 will be used only in the proof of Proposition 3.2 concerning
rigidity of general regular graphs. However, we shall make use of the similar but
much stronger result of Laman’s Theorem (Theorem 6.3) in the case d = 2. The
proof of the above proposition depends on the idea of ‘constraint-counting’; a
set of |V (A)| vertices has d|V (A)| degrees of freedom, while a rigid body in d
dimensions has d(d + 1)/2, so at least d|V (A)| − d(d + 1)/2 edge-constaints are
required to induce rigidity.

3 Infinite rigidity, rigid components, and lat-

tices

In order to study rigidity percolation, we must extend our definition of rigidity to
infinite graphs. There are several possible ways to do this, but we will adopt the
following approach. Let A be any (possibly infinite) graph. We say A is d-rigid
if every finite subgraph of A is a subgraph of some finite d-rigid subgraph of A
(note that this is consistent with the existing definition in the case when A is
finite).

Meta-proposition 3.1 The statements of Propositions 2.2, 2.3 and 2.4 all hold
if we allow the graphs concerned to be infinite.

Proof In each case the result may be deduced easily from the above definition
of rigidity for infinite graphs.

For example, to prove the ‘infinite version’ of Proposition 2.4, suppose A and
B are possibly infinite graphs satisfying the conditions of the proposition. Then
if E ⊆ A ∪ B is a finite graph, we may find finite d-rigid graphs A′ ⊆ A and
B′ ⊆ B such that A′ ⊇ A ∩ E, B′ ⊇ B ∩ E and |V (A′) ∩ V (B′)| ≥ d. We now
appeal to the original proposition. 2

For the sake of convenience, we shall henceforth use the original numbers
2.2, 2.3 and 2.4 to refer to the extensions of these propositions implied by Meta-
proposition 3.1.

By a d-rigid component of a graph, we mean a maximal d-rigid subgraph.
Note that by Proposition 2.4, if A and B are distinct rigid components of E, then
|V (A) ∩ V (B)| < d. Note also that in the case d = 2, this implies A ∩ B = ∅.
(Recall that A and B are sets of edges). Thus the 2-rigid components of E
partition E.

In order for the phenomenon of rigidity percolation to be of any interest, we
must work on an infinite graph which is itself d-rigid (for some d > 1). The
following result gives some conditions under which this is not the case.

Given a graph E, for any subgraph A ⊆ E we define

D(A) = {{x, y} ∈ E : x ∈ V (A), y 6∈ V (A)}.
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Now define
Sn = inf{|D(A)| : A ⊆ E, |V (A)| = n}.

(We interpret Sn as the ‘minimum surface of a sphere of size n’ in E).

Proposition 3.2 Suppose E is an infinite regular graph of degree δ (that is, with
every vertex having degree δ). Then if either

(i) δ < 2d, or

(ii) δ ≤ 2d and Sn → ∞ as n→ ∞,

then E has no finite d-rigid subgraphs with vertex set larger than N , for some N .
Hence E has no infinite rigid subgraphs.

Proof Let A be a subgraph of E with |V (A)| = n. A simple counting argument
shows that

|A| =
δn− |D(A)|

2
.

We may now appeal to Proposition 2.5. In case (i), the proposition implies that
A is not rigid provided n > max{d, d(d+ 1)/(2d− δ)}. In case (ii), A is not rigid
provided n ≥ d and n is large enough to ensure that |D(A)| ≥ d(d+ 1). 2

In particular, we note that the ‘square lattice’ (usually written L2) is not
2-rigid, so it is of no interest to us. For this reason, we shall mainly study the
(two-dimensional) ‘triangular lattice’ T, which we shall now define formally.

Define V ⊂ R2 by

V = {a(1, 0) + b(1/2,
√

3/2) : a, b ∈ Z} ,

and define the origin O = (0, 0) ∈ V . We use + to denote vector space addition
on V , and ‖·‖ for Euclidean distance. We define the triangular lattice T ⊂ V (2)

by
T = {{x, y} : ‖x− y‖ = 1} ,

and note that V = V (T).
We shall make use of several subgraphs of T which for convenience we define

here. We define the hexagons centred at O:

H(n) = T({x : ∆T(O, x) ≤ n})
∂H(n) = T({x : ∆T(O, x) = n}).

(Recall that T(X) denotes the set of edges of T with both vertices in the set X).
We shall also use the hexagons centred at an arbitrary vertex x ∈ V (T), which
we write H(n) + x and ∂H(n) + x. Figure 1 is an illustration of a portion of the
triangular lattice together with two examples of hexagons.
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H(1)+x

O

x

dH(2)

Figure 1: An illustration of a portion of the triangular lattice, together with two
hexagons. Here x is the vertex specified by a = 3, b = 1, and the thickened
subgraphs are ∂H(2) and H(1) + x.

For the purposes of the next section, we shall also give a general definition of
the term ‘lattice’. We say a graph is a lattice if it is graph-theoretic isomorphic
to a graph L with vertex set

V (L) = Z2 × S,

where S is a non-empty, countable set (which may or may not be infinite), and
which satisfies

{(x, s), (y, t)} ∈ L if and only if {(x+ z, s), (y + z, t)} ∈ L

for all x, y, z ∈ Z2 and s, t ∈ S

(that is, L is invariant under the natural translations of Z2). Note that we do not
insist that a lattice is connected, or place any restriction on numbers of edges.
The fact that we allow S to be infinite allows lattices to have ‘dimension’ greater
than 2, so that, for example, the ‘cubic lattice’ (L3) is a lattice.

We note that T is indeed a lattice. We note also T is 2-rigid; this may be
deduced by first using Proposition 2.4 to show that H(n) is 2-rigid for any n.

4 Rigidity percolation

In this section we define the concept of rigidity percolation, and determine suffi-
cient conditions for the critical probability to be strictly less than 1.
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Let E be a countable infinite graph. We wish to consider a ‘random subgraph’
K of E, in which any edge of E is included with probability p, and distinct edges
behave independently. To be precise, we define the sample space Ω (= ΩE) =
{0, 1}E, equipped with the product σ-field. For p ∈ [0, 1] we define Pp to be
the product measure on Ω with parameter p. We define the random variable
K : ΩE → P(E) by K(ω) = {e ∈ E : ω(e) = 1}.

We define the event

R(d) = {K has an infinite d-rigid component containing O}, 1

and define the d-rigidity percolation probability

ρ(d)(p) = Pp(R(d)).

We note that ρ(d) is a non-decreasing function, and define the d-rigidity critical
probability p

(d)
r = p

(d)
r (E) by

p(d)
r = sup{p : ρ(d)(p) = 0}.

Since the concept of 1-rigidity is identical with that of connectivity (Proposi-

tion 2.2), we will normally write pc for p
(1)
r . (This is the usual critical probability

for connectivity percolation).
By Proposition 2.3, for any particular graph we have

pc ≤ p(d)
r (for any d ≥ 1)

(and indeed p
(d)
r ≤ p

(d′)
r whenever d ≤ d′). Standard techniques from percolation

theory may be used to show that for a broad family of graphs we have 0 < pc.
The following result allows us to bound pr away from 1.

1It is of course necessary to check that R(d) is indeed a measurable event; we briefly describe
one approach to this below. Similar arguments can be applied to all the events which we
shall consider, and we shall therefore generally not mention questions of measurability. Write
E = {e1, e2, . . .}, and define En = {e1, . . . , en}. For natural numbers m and n, define the
cylinder event

rm,n = {K ∩ Em has a d-rigid component containing Ed and en}.

Then we have
⋃

m

rm,n = {K has a d-rigid component containing Ed and en},

and so

{⋃m rm,n occurs for infinitely many n}
= {K has an infinite d-rigid component containing Ed}.

But R(d) is the union over all subgraphs of E of size d (such as Ed) containing O of the event
that K has an infinite d-rigid component containing the subgraph. The required measurability
follows.
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Theorem 4.1 For any d ≥ 1, if L is any d-rigid lattice then we have

p(d)
r (L) < 1.

The proof of this theorem depends on the following result of Liggett, Schon-
mann and Stacey ([10]). The result concerns measures on the state space {0, 1}Z

2

equipped with the product σ-field. We write σ = (σ(x))x∈Z2 for a typical point
in the sample space. For any p ∈ [0, 1] we write πp for the product measure
with parameter p. We say that a measure µ is k-dependent (for k ≥ 0) if for
any A,B ⊆ Z2 such that ‖x − y‖ > k for all x ∈ A and y ∈ B, the families
(σ(x))x∈A and (σ(x))x∈B are independent of each other under µ. In words, µ has
no dependence over distances greater than k.

Theorem 4.2 (Liggett et al.) For any k > 0 and α < 1, there exists β < 1
such that for every k-dependent measure µ satisfying µ{σ : σ(x) = 1} ≥ β for
every x ∈ Z2, µ stochastically dominates πα.

A proof of Theorem 4.2 (in a more much general form) may be found in [10].

Sketch Proof of Theorem 4.1 We use a ‘two-dimensional block argument’.
Let L be a d-rigid lattice, and suppose V (L) = S × Z2, as in the definition of
a lattice in the previous section. Without loss of generality, we may assume
that |S| ≥ d, since we make S as large as desired by relabelling V (L) as (S ×
{0, . . . , m − 1}2) × (mZ)2 for any m ≥ 1. Now let T ⊆ S be a set of vertices
of size d. Since L is rigid, we may find a finite rigid subgraph R of L such that
T × {(0, 0), (1, 0), (0, 1)} ⊆ V (R). Choose any such subgraph, and define Rx

(where x ∈ Z2) to be subgraph of L obtained by ‘translating R by x’, that is,
adding the vector x to the vector component of each vertex. Note that R0 = R,
and that Rx is graph-theoretic isomorphic to R.

The crucial point of this construction is that if x, y ∈ Z2 are ‘adjacent’ in the
sense that ‖x− y‖ = 1, then |V (Rx)∩ V (Ry)| ≥ d. Since R is rigid, it follows by
Proposition 2.4 that if x1, x2, . . . is a sequence of distinct vectors in Z2 such that
‖xi+1 − xi‖ = 1 for each i, then

⋃

iRxi
is a rigid graph. We shall show that for

p sufficiently close to 1, K contains an infinite graph of this type almost surely
with respect to Pp.

Given K ⊆ L, define for each x ∈ Z2

σ(x) =

{

1 if Rx ⊆ K
0 otherwise.

We note that since R is finite, the law of σ induced by Pp must be k-dependent
for some k. Also note that for each x we have Pp(σ(x) = 1) = p|R|. We may now
appeal to Theorem 4.2. For any α < 1, we may choose p sufficiently large that
the law of σ stochastically dominates the product measure πα. Hence if we choose

9



α to exceed the critical probability for site percolation on the square lattice in
two dimensions (which is strictly less than 1), the result follows. 2

In particular we note that Theorem 4.1 may be applied to the triangular
lattice to show that p

(2)
r (T) < 1. It is a standard result of percolation theory that

pc(T) > 0, so we also have p
(2)
r (T) > 0.

5 Results for the triangular lattice

The remainder of this work will be devoted to the study of 2-rigidity percolation
on the triangular lattice, T. It is believed that our arguments could in principle
be extended to deal with a large family of lattices, but that this would involve
considerable difficulties of a rather technical graph-theoretic nature.

We have seen that the general results of the previous section imply the in-
equalities

0 < pc(T) ≤ p(2)
r (T) < 1,

so that there is a genuine rigidity phase transition, occurring at a critical proba-
bility greater than or equal to that for connectivity percolation.

Our first main result (Theorem 7.1) will be the strict inequality

pc(T) < p(2)
r (T).

Our approach to proving this is based on the general result of Aizenman and
Grimmett ([1]), although we shall require a slight extension of the method used
therein.

Our second main result (Theorem 8.1) concerns uniqueness of the infinite rigid
component:

If p is such that ρ(2)(p) > 0 and ρ(2) is either left-continuous or right-
continuous at p, then

Pp(K has exactly one infinite 2-rigid component) = 1.

Since ρ(2) is a non-decreasing function, this implies that the above displayed
equation holds for all but countably many values of p in the interval {p : ρ(2)(p) >
0}. We shall also see that the result enables us to make some deductions about
the continuity of ρ(2).

Our approach to proving this result is based on the method of Burton and
Keane ([2]). However, since we are dealing here with rigidity rather than con-
nectivity percolation, we shall require a variety of additional techniques, and our
final result is slightly weaker than the corresponding result in [2], in that we prove
uniqueness only for all but countably many p. We briefly describe the reasons
for this below.
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In the physics literature, rigidity (in contrast with connectivity) is often de-
scribed as a ‘long-range phenomenon’. To see one example of what is meant
by this, consider the effect of adding one extra edge to a graph. The effect on
connectivity is simply to unite the two connected components of the two vertices
into one connected component (if they were distinct initially). However, the ef-
fect on rigidity may be much more complicated. For example, consider starting
with a square and adding one diagonal; initially each of the four edges forms a
distinct 2-rigid component, but the addition of the extra edge unites all five edges
into a single 2-rigid component. Thus it appears to be much more difficult to
predict the effect of adding or removing edges on rigidity (as opposed to connec-
tivity); perhaps the most useful partial information in this direction is provided
by Proposition 6.9.

The method of Burton and Keane essentially consists of two steps. Assuming
that the number of infinite components is infinite, one first deduces the existence
of so-called ‘encounter points’, which may be thought of as points where three
‘branches’ of an infinite component meet. Secondly, a counting argument based
on the ‘compatibility’ of pairs of encounter points shows that this leads to a
contradiction. For the case of 2-rigidity, one may define a natural analogue of
an encounter point, which we shall later refer to as a ‘pre-trifurcation’; roughly
speaking, this is a zone where the removal of a small number of edges causes one
infinite 2-rigid component to split into at least three infinite 2-rigid components.
With the aid of Proposition 6.9, we may show that the existence of infinitely many
infinite 2-rigid components implies the existence of pre-trifurcations, although the
argument is considerably more delicate than in the connectivity case. However,
the conditions defining a pre-trifurcation are not strong enough to allow the final
counting argument to work, essentially because we do not have enough control
over the effect which removing a few edges from near a pre-trifurcation may
have. This difficulty is overcome as follows. Using a further property of rigidity
(Proposition 6.5), and Proposition 8.8 which is an extension of Russo’s Formula
(see [5]), we show that, given the continuity of ρ(2), the effect of removing edges
near a pre-trifurcation extends only over a finite range, and hence, with positive
probability, the effect is only to split one infinite component into three. This
establishes the existence of ‘trifurcations’, whose definition is more restrictive,
and whose properties are such that the counting argument may now be made to
work.

In the section immediately following we shall develop the tools which we will
require to study 2-rigidity, and in the two final sections we shall prove the two
main results for the triangular lattice.
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6 Two-dimensional rigidity

In this section we shall study the properties of 2-rigid graphs in more detail. We
shall do this first for the case of finite graphs, and then extend the results to
infinite graphs. It will be convenient to use the rigidity closure operator, which
is defined below. The material in this section is of a somewhat different nature
to the rest of this work, being primarily combinatorial. The reader should note
that the only information from this section which is logically necessary in what
follows consists of the statements of Theorem 6.3, Propositions 6.4, 6.5, 6.6, 6.7,
6.8, 6.9 and Meta-Proposition 6.10. In particular, the proofs of these statements
may be omitted on a first reading.

We write F(V) for the set of all finite graphs on V. We define the two-
dimensional rigidity closure operator 〈·〉 : F(V) → F(V) as follows. Given
E ∈ F(V), choose a generic embedding of E in 2 dimensions and let M be
the collection of all motions of the resulting framework. We define 〈E〉 to be the
set of all edges {x, y} ∈ V (E)(2) such that the ‘edge length’ ‖r(t)(x) − r(t)(y)‖
is constant for every motion (r(t)) in M. It can be shown (see [4]) that, as we
might expect in the light of Theorem 2.1, the set 〈E〉 so defined is not dependent
on the choice of the generic embedding. By definition,

E is 2-rigid if and only if 〈E〉 = V (E)(2).

We remark that the closure operator is more commonly defined in a somewhat
different but equivalent way in terms of infinitesimal rigidity. See [4] for details.

The following properties of 〈·〉 may be deduced immediately from the defini-
tion.

Lemma 6.1 For any A,B ∈ F(V) we have

(i) 〈A〉 ⊇ A.

(ii) If A ⊆ B then 〈A〉 ⊆ 〈B〉.
(iii) 〈〈A〉〉 = 〈A〉.

The following is an elementary consequence of the previous lemma.

Corollary 6.2 For any A,B ∈ F(V) and A ⊆ A′ ⊆ 〈A〉, we have 〈A ∪ B〉 =
〈A′ ∪ B〉.

We note that all our observations so far could be applied equally to rigidity in
any number of dimensions. Thus we could define a closure operator in the same
way for rigidity in any number of dimensions, and Lemma 6.1 and Corollary 6.2
would still be valid. What makes the case of 2 dimensions special is the following
purely combinatorial characterisation of the closure operator, which is originally
due (in a slightly different form) to Laman, [9]. (See [4] for a treatment of the
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result in the form given here). It is this which allows us to obtain simple proofs
of the results which follow.

We say a graph E ∈ F(V) is overconstrained if |E| > 2|V (E)| − 3, and
balanced if |E| = 2|V (E)| − 3. We say E is independent if it has no overcon-
strained subgraph.

Theorem 6.3 (from Laman) The closure operator 〈·〉 is characterised by

〈E〉 = E ∪ {e : there exists F ⊆ E such that

F is independent but F ∪ {e} is not independent}.

In all that follows we shall restrict our attention to rigidity in 2 dimensions,
and in the remainder of this section and those which follow we will use the
term rigid to mean 2-rigid. Note that the results we shall give in this section
subsume the general rigidity results of Propositions 2.2, 2.3, 2.4 and 2.5 in the
2-dimensional case (as well as providing a considerable amount of further infor-
mation), so that, for example, the statement of Proposition 6.7 is simply the
specialisation of Proposition 2.4 to the case d = 2. Thus all the results on 2-
dimensional rigidity which we shall require follow from Laman’s characterisation.
In all the immediately following results, we assume that A,B,E ∈ F(V).

Proposition 6.4 We have

〈E〉 =
⋃

F⊆E:
F is rigid

V (F )(2).

Proof That the right-hand side is a subset of 〈E〉 follows from the definition
of rigidity, as given above. For the reverse inclusion, suppose that e ∈ 〈E〉.
If e ∈ E then e is a member of the set on the right-hand side, since {e} is a
rigid graph. If not, we note that the graph F in the statement of Theorem 6.3
must have a balanced independent subgraph F ′ such that both vertices of e lie in
V (F ′). Hence, since F ′ is balanced and independent, Theorem 6.3 implies that
〈F ′〉 = V (F ′)(2); that is, F ′ is rigid. Hence the result follows. 2

In words, Proposition 6.4 states that an edge lies in 〈E〉 if and only if both
its vertices are contained in some rigid subgraph of E. It will be useful to bear
in mind this interpretation of the closure operator in what follows. We remark
that the statement corresponding to Proposition 6.4 in 3 or more dimensions is
false (a counter-example in 3 dimensions may be constructed along the lines of
the graph in Figure 1.7 of [4]).

Proposition 6.5 If s, t ∈ V (2) \ 〈E〉 and s ∈ 〈E ∪ {t}〉 then t ∈ 〈E ∪ {s}〉.
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Proof By Theorem 6.3, there must exist F ⊆ E with F ∪ {t} independent and
F ∪ {s, t} not independent. But then F is independent, and F ∪ {s} must be
independent, for otherwise we would have s ∈ 〈E〉. Hence t ∈ 〈F ∪ {s}〉. 2

This is perhaps the least intuitive of our results on rigidity: if the addition
of an edge t ‘locks’ the two vertices of s by causing them to be contained in a
rigid graph, then the addition of s has the same effect on the vertices of t. The
result will be crucial to the proof of Theorem 8.1, since it will enable us to show
that if, with positive probability, there are an infinite number of regions which
are affected by a particular change near the origin (‘hinges’), then, with positive
probability, there are an infinite number of regions at which a change will affect
the origin (‘h-pivotal vertices’). It is this that allows us to deduce the existence
of ‘trifurcations’ from the existence of ‘pre-trifurcations’ and the continuity of
ρ(2). (We remark that the statements of Lemma 6.1 and Proposition 6.5 together
amount to the assertion that 〈·〉 is a matroid closure operator. For more details,
see [4]).

Proposition 6.6 If |V (A) ∩ V (B)| ≤ 1 then 〈A ∪ B〉 ⊆ V (A)(2) ∪ V (B)(2). In
particular, a rigid graph is connected.

Proof Suppose on the contrary that there exist x ∈ V (A) \ V (B) and y ∈
V (B) \ V (A) such that {x, y} ∈ 〈A ∪ B〉. Then there must exist graphs C ⊆ A
and D ⊆ B with C ∪D balanced and independent, and such that x ∈ V (C) and
y ∈ V (D). Now since C ∪D is balanced, we have

|C| + |D| = |C ∪D|
= 2|V (C ∪D)| − 3

≥ 2(|V (C)| + |V (D)| − 1) − 3

= 2|V (C)| + 2|V (D)| − 5.

But since C and D are not overconstrained we have

|C| ≤ 2|V (C)| − 3

and |D| ≤ 2|V (D)| − 3,

giving a contradiction. 2

Proposition 6.7 If A and B are rigid and |V (A) ∩ V (B)| ≥ 2 then A ∪ B is
rigid.

Proof We shall appeal to Corollary 6.2. It is sufficient to show that for any
two vertices x ∈ V (A) \ V (B) and y ∈ V (B) \ V (A) we have {x, y} ∈ 〈A ∪
B〉. Let u, v be two distinct vertices in V (A) ∩ V (B), and note that the edges
{u, v}, {x, u}, {x, v}, {y, u}, {y, v} all lie in 〈A∪B〉. The result now follows from
the observation that the graph consisting of these 5 edges is rigid. 2
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Proposition 6.8 Suppose x, y ∈ V (A) and z ∈ V \ V (A), and let A′ = A ∪
{{x, z}, {y, z}}. Then A′ is rigid if and only if A is rigid.

Proof An argument similar to the above shows that if A is rigid then A′ is
rigid. On the other hand, suppose A′ is rigid but A is not rigid. Then there is
some edge {u, v} ∈ 〈A′〉 \ 〈A〉, where u, v ∈ V (A). It is easily seen this implies
the existence of some C ⊆ A such that C ∪ {{x, z}, {y, z}} is independent and
balanced and u, v ∈ V (C). It follows that C is also independent and balanced,
contradicting the assertion that {u, v} 6∈ 〈A〉. 2

Proposition 6.9 If A ∪ B and B ′ are rigid, and V (A) ∩ V (B) ⊆ V (B ′), then
A ∪ B′ is rigid.

Proof First observe that by Proposition 6.6 we must have |V (A)∩ V (B)| ≥ 2.
We now construct a graph C as follows. Let x and y be two distinct vertices

in V (B′), and let V (B) \ V (A) = {z1, . . . zk}. Then define

C = {{x, z1}, {y, z1}, {x, z2}, {y, z2}, . . . , {x, zk}, {y, zk}}.

Thus, by repeated application of Proposition 6.8 we deduce that A ∪ B ′ is rigid
if and only if A ∪ B′ ∪ C is rigid, and also that B ′ ∪ C is rigid. But applying
Corollary 6.2, we have

〈A ∪B′ ∪ C〉 = 〈A ∪ (V (B′) ∪ V (B))(2)〉 (since B′ ∪ C is rigid)

= 〈V (A ∪B)(2) ∪ (V (B′) ∪ V (B))(2)〉 (since A ∪B is rigid)

= (V (A) ∪ V (B) ∪ V (B ′))(2) (by Proposition 6.7).

= V (A ∪B′ ∪ C)(2)

2

The statement of Proposition 6.9 expresses an intuitively plausible fact: if
we remove some part B of a rigid graph A ∪ B, then we can restore rigidity by
adding any rigid graph B ′ which contains all the vertices of A from which edges
have been removed.

As in Section 3, we may now extend our results to infinite graphs. Let E
be any (possibly infinite) graph. We define 〈E〉 according to the statement of
Proposition 6.4. We now have the following Meta-proposition, whose proof is
straightforward.

Meta-proposition 6.10 The statements of Propositions 6.5, 6.6, 6.7, 6.8 and
6.9 all hold if we allow the graphs concerned to be infinite.

Again, for the sake of convenience, we shall use the original numbers to refer
to the ‘infinite versions’ of these propositions.
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Figure 2: The thickened edge is an example of a bridge.

7 Strict inequality of critical points

Our first main result about the triangular lattice is the following.

Theorem 7.1 We have the strict inequality

pc(T) < p(2)
r (T).

Our approach to proving Theorem 7.1 is to translate the problem into a
problem concerning only connectivity percolation, and then to solve this problem
using the techniques of Aizenman and Grimmett, [1].

Let E be a graph. We say an edge {x, y} ∈ E is a bridge of E if

(i) each of x, y has degree exactly 2 in E, and

(ii) there does not exist z ∈ V (E) such that {x, z}, {y, z} ∈ E.

A bridge is illustrated in Figure 2. The idea of the definition is that removing
bridges has no effect on the infinite rigid components of a graph, but does affect
its connectivity properties.

Lemma 7.2 Let E be a finite graph and let b ∈ E be a bridge. The only rigid
subgraph of E which is not also a rigid subgraph of E \ {b} is {b} itself.

Proof Suppose F is a rigid subgraph of E which is not a rigid subgraph of
E \ {b}. Clearly we have b ∈ F . Further, provided F 6= {b}, by Proposition 6.6,
F must also include the two edges e1, e2 of E adjacent to b, and also at least one
further edge adjacent to each of e1, e2 (we say two edges are adjacent if they share
a vertex). But now, by Proposition 6.6, F \ {b, e2} is not rigid, so by Proposition
6.8, F is not rigid, a contradiction. 2
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e1

O
b

e2

Figure 3: The subgraph W of T, and some special edges of W .

Corollary 7.3 Let E be any graph, and let B ⊆ E be a (possibly infinite) set
of bridges of E. Then the only rigid subgraphs of E which are not also rigid
subgraphs of E \B are singleton bridges {b} ⊆ B. In particular, the infinite rigid
subgraphs of E are precisely the infinite rigid subgraphs of E \B.

Proof We prove the result first for finite rigid subgraphs of E. Since any such
subgraph contains only finitely many bridges in B, we obtain this result simply
by repeatedly applying the preceding lemma. The general result now follows from
the definition of an infinite rigid graph. 2

The above result tells us that removing bridges from a graph has no effect
on its infinite rigid components. The following result will show that removing a
particular set of bridges does have an effect on the connectivity critical probability,
which will enable us to deduce the main result, Theorem 7.1.

Define the set

U = {3a(1, 0) + 2b(1/2,
√

3/2) : a, b ∈ Z} ⊂ V (T).

We also define the subgraph W of T, and the edges b, e1, e2 ∈ W , via Figure 3.
Define also the graph X = {b, e1, e2}. For u ∈ U , we shall write W + u, b+ u etc.
for the ‘translated copies’ of these graphs and edges (which also lie in T). Note
that for any distinct u, v ∈ U , the graphs W + u and W + v are disjoint.

Given the graph K ⊆ T, we define ψ(K) ⊆ T as follows.

ψ(K) = K \
⋃

u∈U :
K∩(W+u)=X+u

{b + u}.

In words, we obtain ψ(K) from K by deleting all edges of the form b + u where
the edges of W + u present in K are precisely those of X + u (so that b + u is a
bridge of K).

Proposition 7.4 (after Aizenman and Grimmett) There exists a non-
empty interval (p1, p2) ⊂ [0, 1] such that for p ∈ (p1, p2) we have

Pp(K has an infinite connected component containing O) > 0,

but Pp(ψ(K) has an infinite connected component containing O) = 0.
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This result is almost a special case of the result proved in [1]. However there
are two essential differences:

(i) Our result is for the triangular lattice, whereas [1] uses the ‘hyper-cubic
lattice’ (Ld).

(ii) The general result in [1] is for ‘enhancements’, that is, systematic alter-
ations to a configuration which involve the addition of edges. Our alter-
ation ψ might be called a dis-enhancement since it involves the removal
of edges, and (to extend the terminology of [1] further), it is an ‘essential’
dis-enhancement.

The proof of Proposition 7.4 is omitted; it presents no substantial difficulty and
consists merely of repeating the steps used in [1], bearing in mind the above
differences.

We are now in a position to prove the main result of this section.

Proof of Theorem 7.1 Let p1, p2 be as in Proposition 7.4. Clearly we have
pc ≤ p1. Now consider ψ(K). For p ∈ (p1, p2), almost surely with respect
to Pp, ψ(K) has no infinite connected component, and therefore no infinite rigid
component. But since ψ(K) is obtained from K by deleting bridges, by Corollary

7.3 this implies that K has no infinite rigid component. Hence p2 ≤ p
(2)
r , and the

required inequality follows. 2

8 Uniqueness for almost all p

Throughout this section we shall work with the triangular lattice T. Our main
result is the following.

Theorem 8.1 If p is such that ρ(2)(p) > 0 and ρ(2) is either left-continuous or
right-continuous at p, then

Pp(K has exactly one infinite rigid component) = 1.

Before proving this theorem, we shall make a few remarks on its consequences,
and then outline the approach of the proof.

We say that ‘we have uniqueness at p’ if p is such that the displayed equation
above holds. Since ρ(2) is a non-decreasing function, it is an immediate corollary
of Theorem 8.1 that we have uniqueness for all but countably many p in the
interval {p : ρ(2)(p) > 0} (and hence for almost all such p with respect to Lebesgue
measure). We conjecture that in fact we have uniqueness for all p in this interval.

It may be shown (by the same method as for connectivity percolation; see
[5], pp 117–119, but replacing ‘a finite path’ with ‘a finite rigid graph’) that the
following holds.
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Proposition 8.2 If p > p
(2)
r and we have uniqueness at p then ρ(2) is left-

continuous at p.

In particular, it follows from this and Theorem 8.1 that we have uniqueness at p
(> p

(2)
r ) if and only if ρ(2) is left-continuous at p. Also, if ρ(2) is left-discontinuous

at p (> p
(2)
r ), then it is also right-discontinuous at the same point.

We shall now give an outline of our approach to proving Theorem 8.1. Stan-
dard arguments can be used to show that for any given p, the number of in-
finite rigid components of K takes some value k with probability 1, and that
k ∈ {0, 1,∞}. Our task is therefore to rule out the possibility k = ∞. We
shall show that this possibility leads to a contradiction, using an extension of the
method of Burton and Keane, [2]. The main step is to prove the existence of
‘trifurcations’, which play the same role as ‘encounter points’ in the terminology
of [2] (the term ‘trifurcation’ is taken from [6]). We first prove the existence of
‘pre-trifurcations’, which have some of the required properties. To deduce the
existence of trifurcations we use Proposition 6.5 to show that with positive prob-
ability, a pre-trifurcation is ‘almost’ a trifurcation when viewed on a sufficiently
large scale. It is here that the continuity of ρ(2) is required, and it is this step
which represents the most significant augmentation to the ideas in [2].

We shall make use of a number of special subgraphs and edges of H(3). These
are most conveniently defined by means of diagrams. Define Y to be the graph
illustrated in Figure 4, and define the edges f1, f2, f3, z0, . . . , z8, w2, w

′
2, w4, w

′
4,

w6, w
′
6 of H(3), and the vertices a2, a4, a6 of V (H(3)) via Figure 5. Also, set

ai+1 = ai, wi+1 = wi, w
′
i+1 = w′

i for each i = 2, 4, 6, and define Z = {z0, . . . , z8}.
Note in particular the form of the graph Y \ Z, which is illustrated in Figure 6.
Finally, we define the following subgraphs of H(3) which will be required in the
proof of Lemma 8.9.

X1 = (Y \ Z) ∪ {z0, z1}
X2 = X1 ∪ {z2}

...

X7 = X6 ∪ {z7}
W2 = X1 ∪ {w2, w

′
2}

...

W7 = X6 ∪ {w7, w
′
7}.

As we shall see, the idea of this construction is that X1, . . . , X7 form a sequence
of intermediate steps between Y \Z and Y , and that Wj, together with the vertex
aj, forms a ‘test configuration’ for testing the difference between Xj−1 and Xj.

We shall make extensive use of the following result used in percolation theory,
whose proof is elementary.
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Figure 4: The subgraph Y of H(3).
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Figure 5: Some special edges and vertices of H(3)

dH(3)

Figure 6: The subgraph Y \ Z of H(3).
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Lemma 8.3 Let A,B ⊆ P(T) be two sets such that {K ∈ A} and {K ∈ B}
are measurable events, and let S ⊂ T be finite. Suppose ζ : P(T) → P(S) is a
function such that

if K ∈ A then (K \ S) ∪ ζ(K) ∈ B.

Then Pp(K ∈ A) > 0 implies Pp(K ∈ B) > 0.

In words, Lemma 8.3 states that if, starting from an event of positive proba-
bility, we can force a second event to occur by making changes to some fixed finite
set of edges, then the second event also has positive probability. This assertion
is closely related to the ‘finite energy condition’ on measures which is used in [2].

We say that the origin is a trifurcation of K if the following three conditions
hold.

(i) K ∩H(3) = Y .

(ii) In the graph K \ Z (whose intersection with H(3) is Y \ Z, see Figure 6),
each of the edges f1, f2, f3 (see Figure 5) lies in an infinite rigid component,
which we denote Ti (i = 1, 2, 3); and T1, T2, T3 have pairwise disjoint vertex
sets (that is, V (Ti) ∩ V (Tj) = ∅ for each pair i 6= j).

(iii) Z ∪T1 ∪T2 ∪T3 is a rigid component of K (in particular it is not contained
in any strictly larger rigid subgraph of K).

Note that conditions (i) and (ii) imply that Z ∪ T1 ∪ T2 ∪ T3 is a rigid graph, so
that the only way in which condition (iii) can fail is for Z ∪ T1 ∪ T2 ∪ T3 to be
contained in a strictly larger rigid graph. It is precisely to rule out this possibility
that we require the assumption about the continuity of ρ(2) in the statement of
Theorem 8.1. A trifurcation is illustrated in Figure 7; after the removal of the
nine edges of Z from the center of the picture, the shaded regions will form parts
of three distinct rigid components.

We say that the origin is a pre-trifurcation if conditions (i) and (ii) hold.
We say x ∈ V is a (pre-)trifurcation if the corresponding statements hold for the
translated graph K − x.

Proposition 8.4 Suppose p is such that

Pp(K has infinitely many infinite rigid components) = 1.

Then we have
Pp(O is a pre-trifurcation of K) > 0.

In proving this result we shall make use of two lemmas, 8.5 and 8.6, whose
validity is ‘obvious’, although full proofs would be somewhat lengthy. A sketch
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Figure 7: An illustration of the event {O is a trifurcation}.

proof of Lemma 8.5 is given, and an example of the construction involved in
Lemma 8.6 is illustrated in Figure 10.

By an interval of ∂H(m) we mean a non-empty proper subset of ∂H(m)
which forms a connected graph. We say two intervals are separate if they have
no common vertex.

Lemma 8.5 Let D1, D2, D3 be infinite connected subgraphs of T \ H(m) with
pairwise disjoint vertex sets. Write Ji = V (Di)∩V (∂H(m)), and suppose |Ji| ≥ 2
for each i. Then there exist pairwise separate intervals I1, I2, I3 of ∂H(m) with
Ji ⊆ V (Ii).

Sketch Proof For any collection of distinct vertices v1, . . . , vr ∈ V (∂H(m)),
we write

v1 y v2 y · · · y vr

for the assertion that the vertices are encountered in the order v1, v2, . . . , vr when
∂H(m) is traversed in the clockwise direction. (Thus, v1 y · · · y vr is equivalent
to vr y v1 y · · · y vr−1, etc. Note that for any two distinct vertices v1 and v2

we always have v1 y v2 and v2 y v1). Also, for u, v ∈ V (∂H(m)), we write [u, v]
for the interval of ∂H(m) whose ‘anticlockwise end’ is u and whose ‘clockwise
end’ is v. (See Figure 8).

Note that for j, j ′ ∈ J1 and k, k′ ∈ J2 ∪ J3, we cannot have j y k y j ′ y k′.
This is because there is an infinite path in D2∪D3 starting from each of k, k′, and
there is a path in D1 from j to j ′ which cannot intersect either of these infinite
paths. (See Figure 8).

Now write J1 = {j1, . . . , jr} where j1 y · · · y jr. By the above observation,
there must exist some pair (js, js′) where s′ ≡ s + 1 (mod r), such that

J2 ∪ J3 ⊆ V ([js, js′]).
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[u,v]

Figure 8: An illustration of the assertion u1 y u2 y u3 and of the interval [u, v].

j’

k’ dH(m)

k

j

Figure 9: An illustration of intersecting paths in D1 and D2 ∪ D3 leading to a
contradiction.
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I3

A3

dH(m)

dH(3)

A1 A2

f3 f2

f1

I1 I2

Figure 10: An example of the construction of the graphs A1, A2, A3.

Without loss of generality we may take (js, js′) = (jr, j1). Now define I1 = [j1, jr],
and define I2 and I3 similarly.

Clearly Ji ⊆ V (Ii), and it is easily verified that I1, I2, I3 are pairwise separate.
2

Lemma 8.6 There exists some fixed R such that if m ≥ R and I1, I2, I3 are
pairwise separate intervals of ∂H(m), then there exist rigid graphs A1, A2, A3 ⊆
(H(m) \ H(3)) ∪ ∂H(3) with pairwise disjoint vertex sets, such that, after rela-
belling indices if necessary, we have Ai ∩ ∂H(m) = Ii and Ai ∩ ∂H(3) = {fi} for
i = 1, 2, 3.

The proof of Lemma 8.6 is omitted. See Figure 10 for an example of the
construction involved. That the graphs A1, A2, A3 are rigid may be deduced from
Proposition 6.8.

Some of the steps in the following proof are illustrated in Figures 11 and 12.

Proof of Proposition 8.4 Suppose the condition of the proposition holds.
Define the event

FN = {at least 3 infinite rigid components of K intersect H(N)}.

Choose N large enough that Pp(FN) ≥ 1/2.
Suppose FN occurs, and let C1, C2, C3 be the ‘first’ three such components

(with respect to some suitable ordering). Since C1, C2, C3 are distinct rigid com-
ponents of a graph, Proposition 6.7 implies that any pair have at most one vertex
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Figure 11: An illustration of the graphs C1, C2, C3.
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Figure 12: An illustration of some of the graphs used in the proof of Proposition
8.4
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in common, so we can take M sufficiently large that

Pp(C1, C2, C3 have pairwise no common vertices

outside V (H(M − 1)) | FN) ≥ 1/2.

Take M ′ = max{M,R} where R is as in Lemma 8.6, and let

G = {FN occurs and C1, C2, C3 have pairwise no common vertices

outside V (H(M ′ − 1))},

so that Pp(G) ≥ 1/4. (See Figure 11).
We shall use Lemma 8.3. We show that for any K such that G occurs, we

can define ζ(K) ⊆ H(M ′) so that O is a pre-trifurcation of (K \H(M ′))∪ ζ(K),
and the result will follow.

Suppose G occurs. For each i, Ci \ H(M ′) must have an infinite connected
component, hence let Di be the ‘first’ such component. By Proposition 6.6, since
Ci is rigid we must have |V (Di) ∩ V (∂H(M ′))| ≥ 2. By Lemma 8.5, there must
exist separate intervals I1, I2, I3 of ∂H(M ′) such that V (Di)∩V (∂H(M ′)) ⊆ V (Ii)
for i = 1, 2, 3. Take I1, I2, I3 to be minimal such intervals, so that their end
vertices lie in the respective V (Di).

Now let A1, A2, A3 be as in Lemma 8.6 with m = M ′, and put ζ(K) =
Y ∪A1 ∪A2 ∪A3. We claim that O is a pre-trifurcation of (K \H(M ′)) ∪ ζ(K).

First observe that by Proposition 6.9, Ai ∪ Di is rigid. We must also show
that the rigid components of the graph (K \ H(M ′)) ∪ A1 ∪ A2 ∪ A3 (which
we shall refer to as L) containing each Ai ∪ Di are distinct and have pairwise
disjoint vertex sets, from which the result will follow. Let Pi be a finite path in
Di connecting the two end vertices of Ii, and let Ei be the set of edges of K in
the finite region enclosed by Pi and Ii. (See Figure 12). We claim that the rigid
component of L containing Ai ∩Di is contained in Ai ∪ Ci ∪ Ei. Indeed suppose
that Ai∪C∪E∪Q ⊆ L is rigid, where C ⊆ Ci\Ei, E ⊆ Ei and Q ⊆ K \(Ci∪Ei).
Then by Proposition 6.9, since V (E) ∩ V (Ai ∪ C ∪Q) ⊆ V (Ai ∪Di), we deduce
that Ai ∪C ∪ (Ai ∪Di)∪Q is rigid; but this is simply Ai ∪C ∪Di ∪Q. Further,
since V (Ai) ∩ V (C ∩Di ∩Q) ⊆ V (Ci), we deduce that Ci ∪ C ∪Di ∪Q is rigid;
but this is simply Ci ∪Q. Hence (since Ci is a rigid component of K), Q = ∅.

The result now follows by Propositions 6.6 and 6.8. 2

Our aim is now to prove the following.

Proposition 8.7 Suppose p is such that

Pp(K has infinitely many infinite rigid components) = 1

and ρ(2) is either left-continuous or right-continuous at p. Then we have

Pp(O is a trifurcation of K) > 0.
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Figure 13: The three marked vertices are examples of hinges.

The proof depends on two lemmas, 8.8 and 8.9.
We start with a definition. Let A ⊆ P(T) be such that {K ∈ A} is an

increasing measurable event, so that if K ⊆ K ′ then K ∈ A implies K ′ ∈ A.
Given K, we say that a vertex x is h-pivotal to A (or to the event {K ∈ A},
when the latter is more convenient) if

K ∪ (H(1) + x) ∈ A and K \ (H(1) + x) 6∈ A.

We shall write NA, (or N{K∈A}) for the (random) number of vertices h-pivotal to
A.

Lemma 8.8 Let A ⊆ P(T) be such that {K ∈ A} is an increasing event. For
any p < 1 we have

lim
δ↓0

(Pp+δ(A) − Pp(A)) ≥ Pp(NA = ∞)

and lim
δ↓0

(Pp(A) − Pp−δ(A)) ≥ Pp(NA = ∞).

Suppose O is a pre-trifurcation of K. We say a vertex x is a hinge if x lies
in fewer rigid components of K than of K \ Z. See Figure 13 for an illustration
of one way in which hinges can occur; the five shaded regions lie in a single
rigid component, but when the edges of Z are removed, each will in a distinct
rigid component, so each of the three marked vertices will lie in two distinct
rigid components. The idea of this definition is that it is the existence of hinges
which may prevent a pre-trifurcation from being a trifurcation. This is essentially
because any rigid component is connected, so given any vertex contained in the
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same rigid component as the origin, this rigid component must contain a path
from the vertex to the origin. If the chosen vertex is not contained in Z ∪ T1 ∪
T2 ∪ T3, then this path must contain a hinge. We shall make this argument
precise in the proof of Proposition 8.7. We shall show that, under the continuity
assumption of Proposition 8.7, the number of hinges must be finite, and we may
therefore ‘remove’ all hinges (with positive probability) by taking a hexagon large
enough to contain all of them, and appealing to Lemma 8.3. We shall show that
the number of hinges is finite by observing that if x is a hinge then by altering the
configuration near the origin (and shifting coordinates), we may make x h-pivotal
to R(2), and using Lemma 8.8.

Lemma 8.9 Suppose

Pp(O is a pre-trifurcation of K and there are infinitely many hinges) > 0.

Then Pp(NR(2) = ∞) > 0.

Proof of Lemma 8.8 We shall prove only the first inequality, the proof of
the second being similar. We introduce the usual coupling of Pp and Pp+δ: let
(ηe)e∈T be a collection of independent Uniform[0, 1] random variables and set
K(p) = {e : ηe < p}. Then for all δ > 0 we have

Pp+δ(K ∈ A) − Pp(K ∈ A) = P (K(p+δ) ∈ A , K(p) 6∈ A)

≥ P (F ), say, where

F = {there exists x ∈ V h-pivotal to A for K (p)

such that p ≤ ηe ≤ p+ δ for all e ∈ H(1) + x}.

But we have

P (F ) ≥ P (F | NA = ∞ for K(p))Pp(NA = ∞).

Now whenever NA = ∞, there is an infinite set of h-pivotal vertices S such that
for any x, y ∈ S with x 6= y, the graphs H(1) + x and H(1) + y are disjoint. It
follows that Pp(F | NA = ∞) = 1, completing the proof. 2

Proof of Lemma 8.9 Suppose O is a pre-trifurcation of K. Define the graphs
K0 ⊂ · · · ⊂ K8 by

K0 = K \ Z,
K8 = K,

Kj = (K \H(3)) ∪Xj (j = 1, . . . , 7).
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O

dH(3)

a2 b

c

Figure 14: An illustration of the case j = 2.

We say x ∈ V (T) is a j-hinge if x lies in fewer rigid components of Kj than
of Kj−1. Thus if x is a hinge, it must be a j-hinge for some j. It is also clear
that 1-hinges and 8-hinges cannot exist (by Proposition 6.8 and Corollary 6.2).
Hence if there are infinitely many hinges, there must be infinitely many j-hinges
for some 2 ≤ j ≤ 7. Thus choose j to be the smallest value such that

Pp(O is a pre-trifurcation of K and there are infinitely many j-hinges) > 0.

We define K̂ = (K \H(3))∪Wj, and also recall the definition of the vertex aj.
The required result follows from the observation (which we justify below) that
any j-hinge outside V (H(3)) is h-pivotal to the event {aj lies in an infinite rigid

component} in K̂. Hence whenever the above event occurs, there are infinitely
many such vertices, so the result follows by Lemma 8.3 and the fact that NR(2)

is translation-invariant.
A separate argument is required for each j. For the sake of brevity, we give

the argument only for the case j = 2, the other cases being similar.
Suppose x ∈ V (T)\V (H(3)) is a 2-hinge. The relevant subgraphs of H(3) are

illustrated in Figure 14. The edges of X1 are indicated by thin solid lines, while
X2 consists of these edges together with the dashed edge {O, b}, and W2 consists
of the edges of X1 together with the two thickened edges. Recall that the graphs
K1, K2 and K̂ differ only on H(3), and we have K1 ∩H(3) = X1, K2 ∩H(3) =
X2, K̂ ∩ H(3) = W2. The vertices O and a2 are also marked, and we define the
additional vertices b and c via the figure. Now, x must have two neighbours u and
v inK such that {x, u}, {x, v} lie in distinct rigid components ofK1 but not ofK2.
Consider the edge {u, v}, which is not necessarily an edge of T. Consider also the
edge {O, b} which is present in K2 but not in K1. We have {u, v}, {O, b} 6∈ 〈K1〉,
and {u, v} ∈ 〈K1 ∪ {{O, b}}〉, so by Proposition 6.5, {O, b} ∈ 〈K1 ∪ {{u, v}}〉.
Hence in K1 ∪ {{u, v}}, there must be some rigid subgraph containing O and b,
and we claim that it must also contain c. Indeed, any rigid subgraph containing
O must include both of the two edges incident to O in K1, otherwise we would
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have a contradiction to Proposition 6.6. It follows by Proposition 6.8 that a2

lies in an infinite rigid component of K̂ ∪ {{u, v}} but not of K̂. Hence since
{u, v} ∈ 〈H(1)+x〉, a2 lies in an infinite rigid component of K̂∪(H(1)+x) but not
of K̂\(H(1)+x), that is, x is h-pivotal to {a2 lies in an infinite rigid component}
in K̂, as required. 2

Proof of Proposition 8.7 It follows from the two previous lemmas that if
ρ(2) is either left-continuous or right-continuous at p, then

Pp(O is a pre-trifurcation of K and there are infinitely many hinges) = 0.

Therefore

Pp(O is a pre-trifurcation of K and there are finitely many hinges) > 0.

Hence for some fixed S <∞ we have

Pp(O is a pre-trifurcation of K and

there are no hinges outside V (H(S − 1))) > 0.

We now appeal to Lemma 8.3. Suppose the above event occurs and let
T1, T2, T3 be the three rigid components of K \ Z containing f1, f2, f3. Define
ζ(K) = H(S) ∩ (Z ∪ T1 ∪ T2 ∪ T3). Define K ′ = (K \ H(S)) ∪ ζ(K). We shall
show that O is a trifurcation of K ′.

Clearly T1, T2, T3 are rigid components of K ′ \Z, since they are rigid compo-
nents of K \ Z and we have K ′ \ Z ⊆ K \ Z.

Suppose the rigid component of K ′ containing H(1) is strictly larger than
Z ∪ T1 ∪ T2 ∪ T3. Since the rigid component is connected, it must contain some
edge {x, y} 6∈ Z ∪T1 ∪T2 ∪T3 with x ∈ V (Ti) (some i). But {x, y} 6∈ H(S) (since
K ′ ∩H(S) = Z ∪T1 ∪T2 ∪T3), and {x, y} must also lie in the rigid component of
K containing H(1) (since we have K ⊇ K ′). We claim that x is a hinge, which
gives a contradiction since x does not lie in V (H(S − 1)). To see that x is a
hinge, note that in K \ Z, x is contained in the rigid component Ti, and also in
another distinct rigid component, T ′ say, which includes the edge {x, y}. In K,
the graphs Ti and T ′ both form part of a single rigid component. Hence, since
the addition of Z cannot make any rigid component smaller, we deduce that x
lies in fewer rigid components of K than of K \ Z. 2

The final ingredient is the following result about ‘compatibility’ of trifurca-
tions. See Figure 15 for an illustration of the proof of the lemma.

Proposition 8.10 Suppose s, t are distinct trifurcations of K which are con-
tained in the same rigid component of K. Write K(s) = K \ (Z + s), K(t) =
K \ (Z + t), and K(s)(t) = K \ ((Z + t) ∪ (Z + t)), and write S1, S2, S3 for the
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Figure 15: An illustration of the proof of ‘compatibility’ of trifurcations.

three rigid components of K(s) containing f1 + s, f2 + s, f3 + s respectively; define
similarly T1, T2, T3 for K(t).

Then, after relabelling indices if necessary, we have

S2 ∪ S3 ⊆ T1.

Proof Due to condition (i) of a trifurcation, it is clear that s+H(1) and t+H(1)
must be disjoint, so after relabelling if necessary, we may assume H(1) + s ⊆ T1

and H(1) + t ⊆ S1. We have S2 ∪ S3 ⊆ T1 ∪ T2 ∪ T3, so we must show that
Si ∩ Tj = ∅ for each pair i, j ∈ {2, 3}. By symmetry it is sufficient to show that
S2 ∩ T2 = ∅.

Suppose r ∈ S2 ∩ T2. Write e = f2 + t (see Figure 15). Then since r ∈ S2 and
e ∈ S1, r and e lie in distinct rigid components of K(s), hence they lie in distinct
rigid components of K(s)(t). But r and e lie in the same rigid component, T2, of
K(t), so we must have Z + s ⊆ T2 also, a contradiction since H(1) + s ⊆ T1. 2

We now follow [2]. Let Z be a finite set with |Z| ≥ 3. A partition of Z is a
set P = {P1, P2, P3} of disjoint non-empty subsets of Z with P1 ∪ P2 ∪ P3 = Z.

Lemma 8.11 (Burton and Keane) If P is a set of partitions of Z such that
for any P,Q ∈ P, after relabelling indices if necessary we have

P2 ∪ P3 ⊆ Q1,

then
|P| ≤ |Z| − 2.

See [2] for a proof of Lemma 8.11.

Proof of Theorem 8.1 All that is now required is to repeat the steps of
[2]. Let N be the number of infinite rigid components of K. By ergodicity,
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Pp(N = k) = 1 for some constant k. Also, if 2 ≤ k < ∞ then it can be shown
using Lemma 8.3 that Pp(N < k) > 0, a contradiction. Also k = 0 is impossible
since we are given that ρ(2)(p) > 0. Hence k ∈ {1,∞}.

Suppose k = ∞. Consider H(n), and let F = {{x, y} ∈ H(n) , x ∈
V (∂H(n))}. Let T = {x ∈ V (H(n − 1)) : x is a trifurcation of K}. Let U ⊆ T
be the set of trifurcations in T belonging to a particular rigid component C of
K, and let Z = F ∩C. Then each trifurcation in U induces a partition of Z, and
by Lemma 8.10, the condition of Lemma 8.11 is satisfied, hence |U | ≤ |Z| − 2.
Applying this to each rigid component containing trifurcations in T and sum-
ming, we may deduce that |T | ≤ |F |. However, Proposition 8.7 implies that
E(|T |) ≥ εn2 for some constant ε > 0, and we have |F | ≤ cn for some constant
c, so we obtain a contradiction for large n. 2

Acknowledgements

I wish to thank Geoffrey Grimmett for advice and assistance at all stages of
this work. The work was funded by a Research Studentship of the University
of Cambridge and by partial financial support from the European Union under
contracts CHRX–CT93–0411 and FMRX–CT96–0075A.

References

[1] M. Aizenman and G. Grimmett. Strict monotonicity for critical points in
percolation and ferromagnetic models. Journal of Statistical Physics, 63:817–
835, 1991.

[2] R. M. Burton and M. Keane. Density and uniqueness in percolation. Com-
munications in Mathematical Physics, 121:501–505, 1989.

[3] H. Gluck. Almost all simply connected closed surfaces are rigid. Number
438 in Lecture Notes in Mathematics, pages 225–239. Springer-Verlag, 1974.

[4] J. Graver, B. Servatius, and H. Servatius. Combinatorial Rigidity. Number 2
in Graduate Studies in Mathematics. American Mathematical Society, 1993.

[5] G. R. Grimmett. Percolation. Springer-Verlag, 1989.

[6] G. R. Grimmett. Percolation and disordered systems. In P. Bernard, edi-
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