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Abstract. The high-density plaquette percolation model in d di-
mensions contains a surface that is homeomorphic to the (d − 1)-
sphere and encloses the origin. This is proved by a path-counting
argument in a dual model. When d = 3, this permits an im-
proved lower bound on the critical point pe of entanglement per-
colation, namely pe ≥ µ−2 where µ is the connective constant for
self-avoiding walks on Z

3. Furthermore, when the edge density p is
below this bound, the radius of the entanglement cluster containing
the origin has an exponentially decaying tail.

1. Introduction and results

The plaquette percolation model is a natural dual to bond per-
colation in two and more dimensions. Let Z

d be the integer lattice;
elements of Z

d are called sites. For any site z, let Q(z) := [− 1
2
, 1

2
]d + z

be the topologically closed unit d-cube centred at z. A plaquette is
any topologically closed unit (d− 1)-cube in R

d that is a face of some
Q(z) for z ∈ Z

d. Let Πd be the set of all plaquettes. For a set of
plaquettes S ⊆ Πd, we write [S] :=

⋃

π∈S π for the associated subset of
R

d. In the plaquette percolation model with parameter p ∈ [0, 1], each
plaquette of Πd is declared occupied with probability p, otherwise un-

occupied, with different plaquettes receiving independent states; the
associated probability measure is denoted Pp.

The `s-norm on R
d is denoted ‖ · ‖s. A sphere of R

d is a simplicial
complex, embedded in R

d, that is homeomorphic to the unit sphere
{x ∈ R

d : ‖x‖2 = 1}. By the generalized Schönflies theorem, the
complement in R

d of a sphere has a bounded and an unbounded path-
component, which we call respectively its inside and outside. The
(`1-)radius of a set A ⊆ R

d with respect to the origin 0 ∈ R
d is

radA = rad0A := sup{‖x‖1 : x ∈ A}.
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Let µd be the connective constant of Z
d, given as

µd := lim
k→∞

σ(k)1/k,

where σ(k) is the number of (`1-)nearest-neighbour self-avoiding paths
from the origin with length k in Z

d; it is a straightforward observation
that µd ∈ [d, 2d− 1], and stronger bounds may be found, for example,
in [19].

Theorem 1. Let d ≥ 2, and consider the plaquette percolation model.

If p < µ−2
d then almost surely there exists a finite set S of unoccupied

plaquettes whose union [S] is a sphere with 0 in its inside. Moreover S
may be chosen so that

Pp

(

rad [S] ≥ r
)

≤ Cαr, r > 0,

for any α ∈ (µdp, 1), and some C = C(p, d, α) <∞.

When d = 2, the first assertion of Theorem 1 amounts to the well
known fact that there exists a suitable circuit of unoccupied bonds of
the dual lattice (see, e.g., [8]). The result is more subtle in higher
dimensions.

When d = 3, Theorem 1 has an application to entanglement per-
colation, which we explain next. Define a bond to be the topolog-
ically closed line segment in R

d joining any two sites x, y ∈ Z
d with

‖x−y‖1 = 1. Let Ld be the set of all bonds. In the bond percolation

model, each bond is declared occupied with probability p, otherwise
unoccupied, with the states of different bonds being independent. For
a set of bonds K, write [K] :=

⋃

e∈K e. We say that K contains a site
x if x ∈ [K].

We say that a sphere Z ⊂ R
d separates a set A ⊂ R

d if A intersects
both the inside and the outside of Z, but not Z itself. (We write
A ⊂ B if A ⊆ B and A 6= B.) Let d = 3. We say that a set of bonds
K ⊆ L3 is 1-entangled if no sphere of R

3 separates [K]. The idea of
this definition is that a 1-entangled set of bonds, if made of string or
elastic, cannot be continuously “pulled apart”. Any connected set of
bonds is evidently 1-entangled. The simplest disconnected set that is
1-entangled consists of two linked loops. The prefix “1” reflects the fact
that other natural definitions of entanglement are possible; see [10] and
the discussion in Section 2 for more details. Entanglement of sets of
bonds is intrinsically a three-dimensional issue, and therefore we shall
always take d = 3 when discussing it.

In the bond percolation model in d = 3, let η1(p) be the probability
that there exists an infinite 1-entangled set of occupied bonds contain-
ing the origin 0, and define the 1-entanglement critical probability
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p1
e := sup{p : η1(p) = 0}. The maximal 1-entangled set of occupied

bonds containing a site x is called the 1-entanglement cluster at x.

Corollary 2. The 1-entanglement critical probability in three dimen-

sions satisfies

p1
e ≥ µ−2

3 .

Moreover, if p < µ−2
3 , the 1-entanglement cluster E at the origin sat-

isfies

Pp

(

rad [E] ≥ r
)

≤ Cαr, r > 0,

for any α ∈ (µdp, 1), and some C = C(p, d, α) <∞.

The connective constant of Z
3 satisfies the rigorous bound µ3 ≤

4.7387 (see [19]). Therefore, Corollary 2 gives

p1
e ≥ 0.04453 · · · >

1

23
.

This is a significant improvement on the previous best lower bound of
[4], namely p1

e > 1/597, which in turn substantially improved the first
non-zero lower bound, p1

e ≥ 1/15616, proved in [13]. In each case, the
improvement is by a factor of approximately 26.

In Section 2 we discuss some history and background to our results.
In Section 3 we prove Theorem 1 and Corollary 2. If p satisfies the
stronger bound p < (2d − 1)−2, we shall see that our methods yield
versions of these results with explicit formulae for the constants C and
α. In Section 4 we consider the critical value of p associated with the
event in Theorem 1, and its relationship to certain other critical values.

2. Remarks

2.1. Duality. To each bond e ∈ Ld there corresponds a unique pla-
quette π(e) ∈ Πd that intersects e. It is therefore natural to couple the
bond and plaquette percolation models with common parameter p in
such a way that π(e) is occupied if and only if e is occupied. If p is less
than the critical probability pc for standard bond percolation (see, e.g.,
[8]), the connected component of occupied bonds at the origin is almost
surely finite, and it is a straightforward consequence that there exists
a finite set of unoccupied plaquettes whose union encloses the origin
(i.e., the origin lies in some bounded component of its complement).
Indeed, such plaquettes may be chosen so as to form a ‘surface’ enclos-
ing the origin (although precise definition of such an object requires
care). However, such a surface might be homeomorphic to a torus, or
some other topological space. It is a key point of Theorem 1 that the
surface [S] is a sphere.
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2.2. Entanglement. Entanglement in three-dimensional percolation
was first studied, in a partly non-rigorous way, in [16] (some interesting
remarks on the subject appeared earlier in [2]). The rigorous theory was
systematically developed in [10], and further rigorous results appear in
[3, 12, 13, 14, 15]. A discussion of physical applications of entanglement
percolation may be found in [4].

As mentioned in Section 1, there are several (non-equivalent) ways of
defining the property of entanglement for infinite graphs. One of these,
namely 1-entanglement, was presented in that section, and a second
follows next. We say that a set of bonds K ⊆ L3 is 0-entangled if
every finite subset of K is contained in some finite 1-entangled subset
of K. It was shown in [10] that the notions of 0-entanglement and
1-entanglement are extremal members of a certain class of natural can-
didate definitions, called entanglement systems, and furthermore that
these two entanglement systems correspond (respectively) in a natural
way to free and wired boundary conditions.

By combining inequalities of [3, 10, 13], we find that

0 < p1
e ≤ pEe ≤ p0

e < pc < 1,

where p0
e , p

1
e, and pEe are the critical probabilities for 0-entanglement,

1-entanglement, and for an arbitrary entanglement system E , respec-
tively. The inequality p0

e ≤ pc reflects the straightforward fact that
every connected set of bonds is 0-entangled. It was strengthened to
the strict inequality p0

e < pc in [3, 15]. In [16] it was argued on the
basis of numerical evidence that pc − pe ≈ 1.8 × 10−7, for a certain
notion of ‘entanglement critical probability’ pe. It is an open question
to decide whether or not p0

e = p1
e .

2.3. Spheres, lower bounds, and exponential decay. The in-
equality p1

e > 0 expresses the fact that, for a sufficiently small density
p of occupied bonds, there is no infinite entangled set of bonds. Prior
to the current paper, proofs of this seemingly obvious statement have
been very involved.

The proof in [13] employs topological arguments to show that, for p <
1/15616, almost surely the origin is enclosed by a sphere that intersects
no occupied bond. The argument is specific to three dimensions, and
does not resolve the question of the possible existence of a sphere of
unoccupied plaquettes enclosing the origin. (See [10] for more on the
distinction between spheres intersecting no occupied bond, and spheres
of unoccupied plaquettes.) In [10], related arguments are used to show
that, for sufficiently small p, the radius R of the 1-entanglement cluster



PLAQUETTES, SPHERES, AND ENTANGLEMENT 5

at the origin has ‘near-exponential’ tail decay in that

P(R > r) < exp
(

−cr/ log · · · log r
)

for an arbitrary iterate of the logarithm, and for some c > 0 depending
on p and the number of logarithms.

In the recent paper [4], the above results are substantially improved
in several respects. The lower bound on the critical point is improved
to approximately p1

e > 1/597, and it is proved also that the radius of
the 1-entanglement cluster at the origin has exponential tail decay for p
below the same value. The key innovation is a proof of an exponential
upper bound on the number of possible 1-entangled sets of N bonds
containing the origin, thereby answering a question posed in [10]. The
method of proof is very different from that of [13].

In the current article, we improve on the proofs mentioned above
in several regards. The lower bound on the critical point is further
improved to approximately p1

e > 1/23, and we establish exponential
decay of the 1-entanglement cluster-radius at the origin for p below
this value. We prove the existence of a sphere of unoccupied plaquettes
enclosing the origin (rather than just a sphere intersecting no occupied
bond), and we do so for all dimensions. Finally, our proofs are very
simple. Our methods do not appear to imply the key result of [4]
mentioned above, namely the exponential bound for entangled sets
containing the origin.

3. Proofs

The geometric lemma below is the key to our construction of a
sphere. For x, y ∈ R

d, write y � x if for each i = 1, 2, . . . , d we have
|yi| ≤ |xi| and xiyi ≥ 0 (equivalently, y lies in the closed cuboid with
opposite corners at 0 and x). For a bond e ∈ Ld, recall that π(e) ∈ Πd

is the unique plaquette that intersects it.

Proposition 3. Let d ≥ 2. Suppose K ⊂ Z
d is a finite set of sites

containing 0, with the property that, if x ∈ K, then every y ∈ Z
d with

y � x lies in K. Let

(1) S :=
{

π(e) : e is a bond with exactly one endvertex in K
}

.

Then [S] is a sphere with 0 in its inside.

Proof. Let U :=
⋃

x∈K Q(x) be the union of the unit cubes correspond-
ing to K. Note that [S] is the topological boundary of U in R

d. Let
Σ := {z ∈ R

d : ‖z‖2 = 1} be the unit sphere; we will give an explicit
homeomorphism between [S] and Σ.
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We claim first that U is strictly star-shaped, which is to say: if x ∈ U
then the line segment {αx : α ∈ [0, 1)} is a subset of the topological
interior of U (i.e., of U \ [S]). To check this, suppose without loss of
generality that x is in the non-negative orthant [0,∞)d. By the given
properties of K, the open cuboid

H :=

d
∏

i=1

(

− 1
2
, xi ∨

1
2

)

is a subset of U (here it is important that the origin is at the centre
of a cube, rather than on a boundary); now, H clearly contains the
aforementioned line segment, and the claim is proved. In the above,
x ∨ y denotes the maximum of x and y.

It follows that, for any point z ∈ Σ, the ray {αz : α ∈ [0,∞)}
has exactly one point of intersection with [S]. Denote this point of
intersection f(z). Clearly f is a bijection from Σ to [S]; we must
prove that it is a homeomorphism. Since Σ and [S] are compact metric
spaces, it suffices to express them as finite unions Σ =

⋃r
j=1Xj and

[S] =
⋃r

j=1 Yj, where the Xj and Yj are compact, and such that f
restricted to Xj is a homeomorphism from Xj to Yj, for each j. This is
achieved by taking {Y1, . . . , Yr} equal to the set of plaquettes S. Any
plaquette in Πd is a subset of some (d− 1)-dimensional affine subspace
(hyperplane) of R

d that does not pass through 0 (here the offset of 1

2

is again important) and it is elementary to check that the projection
through 0 from such a subspace to Σ is a homeomorphism to its image
in Σ.

Finally, we must check that 0 lies in the inside of the sphere [S]; this
is clear because 0 ∈ U \ [S], and any unbounded path in R

d starting
from 0 must leave U at some point, and thus must intersect [S]. �

The next lemma is closely related to a recent result on random sur-
faces in [7]. Consider the bond percolation model with parameter p on
Ld. By a path we mean a self-avoiding path comprising sites in Z

d

and bonds in Ld. Recall that σ(k) is the number of paths starting at
the origin and having k edges, and

µd := lim
k→∞

σ(k)1/k

is the connective constant. Let 0 = v0, v1, . . . , vk be the sites (in order)
of such a path. We call the path good if, for each i satisfying ‖vi−1‖1 <
‖vi‖1, the bond with endpoints vi−1, vi is occupied.
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Lemma 4. Let K be the set of sites u ∈ Z
d for which there is a good

path from 0 to u. If p < µ−2
d then K is a.s. finite, and moreover,

(2) Pp(radK ≥ r) ≤ C ′αr, r ≥ 0,

for any α ∈ (µdp, 1), and some C ′ = C ′(p, d, α) <∞. If p < (2d−1)−2

then (2) holds with α = p(2d− 1) and C ′ = 2/[1 − p(2d− 1)2].

Proof. Let N(r) be the number of good paths that start at 0 and end
on the `1-sphere {x ∈ Z

d : ‖x‖1 = r}. Then,

Pp(radK ≥ r) ≤ Pp(N(r) > 0) ≤ EpN(r).

For any path π with vertices 0 = v0, v1, . . . , vk = u with ‖u‖1 = r, let

A := #{i : ‖vi‖1 > ‖vi−1‖1}; B := #{i : ‖vi‖1 < ‖vi−1‖1}

be respectively the number of steps Away from, and Back towards,
the origin 0. Note that k = A + B, and ‖u‖1 = A − B. Thus, the
probability that π is good is pA, while the number of possible paths
having given values of A and B is at most σ(A+B). Hence,

(3) EpN(r) ≤
∑

A,B≥0:
A−B=r

σ(A +B)pA =
∑

B≥0

σ(2B + r)pB+r.

For any ε > 0, we have σ(k) ≤ (µ+ ε)k for k sufficiently large, where
µ = µd. Therefore, (3) is at most

∑

B≥0

(µ+ ε)2B+rpB+r =
[(µ+ ε)p]r

1 − (µ+ ε)2p

provided (µ + ε)2p < 1 and r is sufficiently large; thus we can choose
C ′ so that the required bound (2) holds for all r ≥ 0.

The claimed explicit bound in the case p < (2d−1)−2 follows similarly
from (3) using σ(k) ≤ (2d)(2d− 1)k−1 ≤ 2(2d− 1)k. �

Proof of Theorem 1. Couple the bond and plaquette percolation mod-
els by considering e to be occupied if and only π(e) is occupied. Let
p < µ−2

d and let K be the random set of sites u for which there exists
a good path from 0 to u. By Lemma 4, K satisfies (2) with the given
constants α, C ′.

Since a good path may always be extended by a step towards the
origin (provided the new site is not already in the path), K satisfies the
condition that x ∈ K and y � x imply y ∈ K. Therefore, Proposition 3
applies. If e is a bond with exactly one endvertex in K, then by the
definition of a good path, it is the end closer to 0 that is in K, and
e must be unoccupied. Therefore, all plaquettes in the set S in (1)
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are unoccupied. Finally, the tail bound in (2) implies the bound in
Theorem 1 because rad [S] ≤ radK + d/2. �

Proof of Corollary 2. Couple the bond and plaquette models as usual.
Let p < µ−2

3 , and let S be the set of plaquettes from Theorem 1. The
sphere [S] intersects no occupied bond and has 0 in its inside, hence it
has [E] in its inside. �

4. Critical values

We consider next the critical value of p for the event of Theorem 1,
namely the event that there exists a finite set S of unoccupied pla-
quettes whose union [S] is a sphere with 0 in its inside. In so doing,
we shall make use of the definition of a good path from Section 3. We
shall frequently regard Z

d as a graph with bond-set Ld. A directed path
of Z

d is called oriented if every step is in the direction of increasing
coordinate-value.

Let d ≥ 2, and (as after Theorem 1) declare a bond of Ld to be
occupied with probability p. Let θg(p) be the probability that there
exists an infinite good path beginning at the origin. Since θg is a non-
decreasing function, we define a critical value

pg := sup{p : θg(p) = 0}.

Note that

(4) µ−2
d ≤ pg ≤ ~pc,

where ~pc = ~pc(d) denotes the critical probability of oriented percolation
on Z

d. That µ−2
d ≤ pg follows by Theorem 1; the second inequality

pg ≤ ~pc holds since every occupied oriented path from 0 is necessarily
good.

For x = (x1, x2, . . . , xd) ∈ Z
d, let

s(x) :=
d

∑

i=1

xi,

and let

Hn := {x ∈ Z
d : s(x) = n}; H := {x ∈ Z

d : s(x) ≥ 0}; H+ := H \H0.

A finite or infinite path v0, v1, . . . is called admissible if, for each i
satisfying s(vi−1) < s(vi), the bond with endpoints vi−1, vi is occupied.
If there exists an admissible path from x to y, we write x→a y; if such
a path exists using only sites in some set S, we write x→a y in S.

Let e := (1, 1, . . . , 1) and

R := sup{n ≥ 0 : 0 →a ne}.
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Let θa(p) := Pp(R = ∞), with associated critical value

pa := sup{p : θa(p) = 0}.

By the definition of admissibility,

(5) θa(p) = Pp(∀x ∈ Z
d, 0 →a x),

and indeed the associated events are equal.
If x →a y by an admissible path using only sites of H+ except pos-

sibly for the first site x, we write x →H
a y. We write x →H

a ∞ if x
is the endvertex of some infinite admissible path, all of whose vertices
except possibly x lie in H+. Let θH

a (p) = Pp(0 →H
a ∞), with associated

critical value
pH

a := sup{p : θH
a (p) = 0}.

Also define the orthant

K := {x ∈ Z
d : xi ≥ 0 for all i}.

Let θK
a (p) be the probability of an infinite admissible path in K starting

at 0, and let pK
a be the associated critical value. Since K ⊆ H+ ∪ {0},

we have θH
a ≥ θK

a and pH
a ≤ pK

a .

Theorem 5. For d ≥ 2 we have pa ≤ pH
a = pK

a .

Since every admissible path in the orthant K is good, we have that
pg ≤ pK

a , and therefore pg ≤ pH
a by Theorem 5. We pose two questions.

Question 1. For d ≥ 3, is it the case that pa = pH
a ?

Question 2. For d ≥ 3, is it the case that pg = pH
a ?

These matters are resolved as follows when d = 2.

Theorem 6. For d = 2 we have pg = pH
a = pa = 1 − ~pc, where

~pc = ~pc(2) is the critical probability of oriented percolation on Z
2.

In advance of the proofs, we present a brief discussion of Question 1
above. By Lemma 7 below, one has that

lim
n→∞

Pp(0 →H
a Hn)

{

= 0 if p < pa,

> 0 if p > pa.

Now,

Pp(0 →a ne) ≤
∑

x∈H0

Pp(x→H
a ne)

=
∑

x∈H0

Pp(0 →H
a ne− x) =

∑

x∈Hn

Pp(0 →H
a x).
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If one could prove that
∑

x∈Hn

Pp(0 →H
a x) → 0 as n→ ∞,

whenever p < pH
a , it would follow by Theorem 5 that pa = pH

a . This
is similar to the percolation problem solved by Aizenman–Barsky and
Menshikov, [1, 17, 18] (see also [8, Chap. 5]). It seems possible to
adapt Menshikov’s proof to prove an exponential-decay theorem for
admissible paths, but perhaps not for admissible connections restricted

to H.
The proofs of the two theorems above will make heavy use of the

next lemma. Let d ≥ 2 and 0 ≤ a < b ≤ ∞. Define the cone Ka,b to
be the set of sites x = (x1, x2, . . . , xd) ∈ Z

d satisfying:

(6) x1 ≥ 0, and ax1 ≤ xj ≤ bx1 for j = 2, 3, . . . , d.

It is easy to see that Ka,b comprises a unique infinite component, de-
noted I(Ka,b), together with a finite number of finite components.

Lemma 7. For d ≥ 2, let p > pH
a and 0 ≤ a < b ≤ ∞. Then

Pp(Ka,b contains some infinite admissible path) = 1,

and for all v ∈ I(Ka,b),

Pp(v →a ∞ in Ka,b) > 0.

The remainder of this section is set out as follows. First, we deduce
Theorems 5 and 6 from Lemma 7. The proof of Lemma 7 is not pre-
sented in this paper, since it would be long and would repeat many
constructions found elsewhere. Instead, this section ends with some
comments concerning that proof.

Proof of Theorem 5. As noted before the statement of Theorem 5, K ⊆
H+ ∪ {0}, whence pH

a ≤ pK
a . Let p > pH

a . By Lemma 7 with a = 0 and
b = ∞, we have θK

a (p) > 0, so that p ≥ pK
a . Therefore, pH

a = pK
a .

There is more than one way of showing pa ≤ pH
a , of which the follow-

ing is one. Let d ≥ 3; the proof is similar when d = 2. Let p > pH
a and

fix 0 < a < b < ∞ arbitrarily. By Lemma 7, Ka,b contains a.s. some
infinite admissible path π. Any infinite path π in Ka,b has the property
that, for all x ∈ Z

d, there exists z ∈ π with x ≤ z (in that xi ≤ zi for
every coordinate i). By (5), θa(p) > 0, so that p ≥ pa and pH

a ≥ pa as
claimed. �

Proof of Theorem 6. We shall make extensive use of two-dimensional
duality. We call the graph Z

2 the primal lattice, and we call the
shifted graph Z

2 + (1

2
, 1

2
) the dual lattice. Thus, the dual bonds are
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precisely the plaquettes of Π2. Recall that a dual bond is declared
occupied if and only if the primal bond that crosses it is occupied. For
consistency with standard terminology, we now call a dual bond open

if and only if it is unoccupied (so a dual bond is open with probability
q := 1−p). We assign directions to dual bonds as follows: a horizontal
dual bond is directed from left to right, and a vertical bond from top
to bottom.

Consider the sets

D+ := {(−u, u) + (− 1

2
, 1

2
) : u ≥ 0},

D− := {(u,−u) + ( 1

2
,−1

2
) : u ≥ 0},

of dual sites. The primal origin 0 lies in some infinite admissible path
of H+ if and only if no site of D+ is connected by an directed open
dual path of the north–east half-plane {(x, y) : x+ y ≥ 0} to some site
of D−. If 1 − p < ~pc (respectively, 1 − p > ~pc) the latter occurs with
strictly positive probability (respectively, probability 0). Therefore,
pH

a = 1 − ~pc.
We show next that pg = pH

a . Since pg ≤ pH
a , it suffices to show that

pg ≥ 1 − ~pc. Let p < 1 − ~pc, so that 1 − p > ~pc. We shall prove the
required inequality p ≤ pg. Define the set of dual sites

Q := {(x, y) + ( 1
2
, 1

2
) : x, y ≥ 0}.

Let B(k) ⊆ Q be given by B(k) := [0, k]2 + (1

2
, 1

2
). For n ≥ 0, let Cn

be the event that there exists a directed open dual path from vn :=
(n, 0) + (1

2
, 1

2
) to wn := (0, n) + (1

2
, 1

2
) lying entirely within the region

B(n) \B(1
3
n). We claim that there exists β > 0 such that

(7) Pp(Cn) ≥ β, n ≥ 1,

and the proof of this follows.
Let Vn be the event that there exists a directed open dual path from

vn to the line {(n, k)+( 1

2
, 1

2
) : 0 ≤ k ≤ n} lying entirely within the cone

{(x, y)+(1

2
, 1

2
) : 0 ≤ n−y ≤ x, x ≥ 0}; let Wn be the event that such a

path exists to wn from some site on the line {(k, n)+( 1
2
, 1

2
) : 0 ≤ k ≤ n},

this path lying entirely within {(x, y)+( 1

2
, 1

2
) : n−x ≤ y <∞, x ≤ n}.

By Lemma 7, Pp(Vn) > 0. By reversing the directions of all dual bonds,
we see that Pp(Wn) = Pp(Vn). On the event Vn ∩Wn, there exists a
directed open dual path of B(n) \B( 1

3
n) from vn to wn, and hence, by

the Harris–FKG inequality,

Pp(Cn) ≥ Pp(Vn)Pp(Wn) > 0,

as required for (7).
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By considering corresponding events in the other three quadrants
of Z

2 (with appropriately chosen bond-orientations), we conclude that
each annulus of R

2 with inner (respectively, outer) `∞-radius 1

3
n (re-

spectively, n+ 1

2
) contains, with probability at least (1− p)4β4, a dual

cycle blocking good paths from the origin. It follows that p ≤ pg as
required.

Finally we show that pa = 1 − ~pc. Since pa ≤ pH
a by Theorem 5, we

have only to show that pa ≥ 1 − ~pc. This follows by (5) and the fact
that, when q = 1−p > ~pc, there exists Pp-a.s. a doubly-infinite directed
open dual path intersecting the positive y-axis. Here is a proof of the
latter assertion. Let ψ(q) be the probability that there exists an infinite
oriented path from the origin in oriented percolation with density q.
By reversing the arrows in the fourth quadrant, the probability that 0
lies in a doubly-infinite directed open path of Z

2 is ψ2. The event

J := {there exists a doubly-infinite open dual path}

is a zero–one event and Pp(J) ≥ ψ2, so that Pp(J) = 1. Let J+

(respectively, J−) be the event that such a path exists and intersects
the positive (respectively, the non-positive) y-axis. By reversing the
directions of bonds, we have that Pp(J

+) = Pp(J
−). By the Harris–

FKG inequality,

0 = Pp(J) = Pp(J+ ∩ J−) ≥ Pp(J+)Pp(J−) = Pp(J+)2,

so that Pp(J
+) = 1. �

We finish with some comments on Lemma 7. This may be proved by
the dynamic-renormalization arguments developed for percolation in [5,
11], for the contact model in [6], and elaborated for directed percolation
in [9]. An account of dynamic renormalization for percolation may be
found in [8]. The proof of Lemma 7 is omitted, since it requires no
novelty beyond the above works, but extensive duplication of material
therein. The reader is directed mainly at [9], since the present lemma
involves a model in which the edge-orientations are important. The
method yields substantially more than the statement of the lemma,
but this is not developed here.

Three aspects of the proof are highlighted, since they involve minor
variations on the method of [9]. First, the box BL,K of [9, Sect. 4] is
replaced by

Bl,k := {x ∈ H : s(x) ≤ k, ‖x‖1 ≤ l},

with an amended version of [9, Lemma 4.1]. Secondly, the current proof
uses the technique known as ‘sprinkling’, as at the corresponding point
of the proofs presented in [11] and [8, Sect. 7.2].
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Finally, since Lemma 7 is concerned with admissible paths in sub-
cones of the orthantK, we require a straightforward fact about oriented
percolation on Z

2, namely that the associated critical probability is
strictly less than 1. This weak statement leads via renormalization to
the stronger Lemma 7. Consider oriented bond percolation on Z

2 with
edge-probability p. We write u → v if there exists an open oriented
path from u to v, and u → ∞ if u is the first site of some infinite
oriented open path.

Lemma 8. Let 0 ≤ a < b ≤ ∞, and let Ka,b be the cone of Z
2

containing all sites (x, y) with ax ≤ y ≤ bx and x ≥ 0. There exists

ε = εa,b > 0 such that: if p > 1 − ε,

Pp(Ka,b contains some infinite open oriented path) = 1,

and for all v ∈ I(Ka,b),

Pp(v → ∞ in Ka,b) > 0.

Proof. Let r = r2/r1, s = s2/s1 be rationals satisfying a < r < s < b,
and write R = (r1, r2), S = (s1, s2). Let v ∈ I(Ka,b), and consider the
set vi,j := v + iR + jS, i, j ≥ 0, of sites of Ka,b. Choose an oriented
path π1 (respectively, π2) of Ka,b from v to v +R (respectively, v + S)
such that the last bond is horizontal (respectively, vertical). The paths
π1 and π2 may have bonds in common. Let α = pN where N is the
number of bonds in either π1 or π2. We declare vi,j black if all bonds
in both vi,j +π1 and vi,j +π2 are open. Note that the states of different
sites vi,j are independent.

If 1−α < (1−~pc)
2, the set of black vertices dominates (stochastically)

the set of sites w of a supercritical oriented percolation model with the
property that both bonds directed away from w are open. The claims
of the lemma follow by standard properties of oriented percolation. �
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