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Abstract
Given a homogeneous Poisson process on Rd with intensity λ, we

prove that it is possible to partition the points into two sets, as a deter-
ministic function of the process, and in an isometry-equivariant way,
so that each set of points forms a homogeneous Poisson process, with
any given pair of intensities summing to λ. In particular, this answers
a question of Ball [3], who proved that in d = 1, the Poisson points
may be similarly partitioned (via a translation-equivariant function)
so that one set forms a Poisson process of lower intensity, and asked
whether the same was possible for all d. We do not know whether
it is possible similarly to add points (again chosen as a deterministic
function of a Poisson process) to obtain a Poisson process of higher
intensity, but we prove that this is not possible under an additional
finitariness condition.

1 Introduction

Let B = B(Rd) be the Borel σ-field on Rd. Let M be the space of all Borel
simple point measures on (Rd,B), and let M be the product σ-field on M

(we give detailed definitions in Section 2). Given an isometry θ of Rd and
µ ∈ M, we define θ(µ) to be the measure given by θ(µ)(A) = µ(θ−1(A)) for
all A ∈ B. We say that a measurable mapping φ : M → M is isometry-

equivariant if θ(φ(µ)) = φ(θ(µ)) for all µ ∈ M and for all isometries θ
of Rd. Similarly we say that φ is translation-equivariant if it commutes
with all translations of Rd. We define a partial order ≤ on M via: µ1 ≤ µ2
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if and only if µ1(A) ≤ µ2(A) for all A ∈ B. We say that a mapping φ is
monotone if either φ(µ) ≤ µ for all µ ∈ M, or µ ≤ φ(µ) for all µ ∈ M.

Our main result is the following.

Theorem 1. For all d ≥ 1 and for all λ > λ′ > 0, there exists a monotone
isometry-equivariant mapping φ : M → M such that if X is a homogeneous
Poisson point process on Rd with intensity λ, then φ(X) and X − φ(X) are
homogeneous Poisson point processes on Rd with intensities λ′ and λ − λ′

respectively.

In other words, Theorem 1 states that the points of a Poisson process
may be coloured red and blue, in a deterministic isometry-equivariant way,
so that both the red process and the blue process are Poisson processes.
Ball [3] proved that in the case d = 1, for all λ > λ′ > 0, there exists
a monotone translation-equivariant mapping φ : M → M such that if X
is a Poisson point process with intensity λ, then φ(X) is a homogeneous
Poisson point process with intensity λ′ (in other words, the Poisson pro-
cess may be “thinned” in a deterministic translation-equivariant way). Ball
asked whether the same was possible in higher dimensions, and also whether
the condition of translation-equivariance could be strengthened to isometry-
equivariance. Theorem 1 answers both questions affirmatively, as well as
providing the additional property that X −φ(X) is a Poisson process. Evans
[4] recently proved that Poisson processes cannot be thinned in an equivari-
ant way with respect to any affine measure-preserving group that is strictly
larger than the isometry group.

If all considerations of monotonicity are dropped, then the following result
of Ornstein and Weiss applies, even without the restriction that λ > λ′.

Theorem 2 (Ornstein and Weiss). For all d ≥ 1 and all λ, λ′ ∈ (0,∞),
there exists a isometry-equivariant mapping φ : M → M such that if X is a
homogeneous Poisson point process on Rd with intensity λ, then φ(X) is a
homogeneous Poisson point process on Rd with intensity λ′.

Ornstein and Weiss [18] proved Theorem 2 as part of a much more general
theory. In particular, they proved the existence of an isomorphism, whereas
Theorem 2 asserts the existence only of a homomorphism. The tools we
develop to prove Theorem 1 allow us to give an alternative proof of Theorem
2. The map we construct is explicit, and satisfies an additional continuity
property (see Theorem 4 below). When λ′ > λ, we do not know whether
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the condition of monotonicity can be added to Theorem 2 (in other words,
whether a Poisson process can be deterministically “thickened”).

Question 1. Let d ≥ 1 and let λ′ > λ > 0. Does there exists a monotone
isometry-equivariant φ : M → M such that if X is a homogeneous Poisson
point process on Rd with intensity λ, then φ(X) is a homogeneous Poisson
point process on Rd with intensity λ′?

However, we can prove that the answer to Question 1 becomes no when φ
is required to satisfy the following additional condition. For µ ∈ M, we define
the restriction of µ to a set A ∈ B via: µ

∣

∣

A
(·) := µ(· ∩ A) (so µ

∣

∣

A
∈ M). Let

‖ ·‖ be the Euclidean norm on Rd. The open ball of radius r centered at x is
denoted by B(x, r) := {y : ‖x − y‖ < r}. Let X be a Poisson point process
on Rd with law P . We say that a translation-equivariant measurable mapping
φ : M → M is strongly finitary with respect to P if, for P -a.e. µ ∈ M,
there exists a positive real number n = n(µ) such that for P -a.e. µ′ ∈ M, we
have φ(µ)|B(0,1) = φ(µ′)|B(0,1) whenever µ|B(0,n) = µ′|B(0,n). (In other words,
the restriction of φ(µ) to the unit ball is determined by the restriction of
µ to a larger ball, of random but finite radius.) With the addition of this
condition, we can answer Question 1 in the negative, even if we drop the
condition of isometry-equivariance.

Theorem 3. Let d ≥ 1 and λ′ > λ > 0. Let X be a homogeneous Poisson
point process on Rd with intensity λ and law P . There does not exist a
translation-equivariant monotone measurable mapping φ : M → M such that
φ(X) is a homogeneous Poisson point process on Rd with intensity λ′ and φ
is strongly finitary with respect to P .

In fact, our proof of Theorem 3 will not use the assumption of translation-
equivariance either, so we actually prove the stronger statement that no
mapping φ satisfying the other conditions can have have the property that
the restriction of φ(µ) to the unit ball is determined by the restriction of µ
to a larger random ball, as defined above.

In Section 11, we shall show that the mappings that we produce to prove
Theorems 1 and 2 are strongly finitary. The mapping produced in [3] is also
strongly finitary.

Theorem 4. Theorems 1 and 2 hold even with the further requirement that
the isometry-equivariant mapping φ be strongly finitary with respect to P ,
where P is the law of X.
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Sometimes deterministic translation-equivariant maps like the ones of
Theorems 1 and 2 are called factors. Factors are of basic importance in
ergodic theory and continue to play a central role in applications of ergodic
theory to combinatorics. The combinatorial and probabilistic aspects of fac-
tors themselves have received attention in recent years as well. It turns out
that factors are intimately related to Palm theory and shift-coupling. For
more information, see [26], [27], [8], and [15]. Factor graphs of point processes
have also received considerable attention; see [5], [7], and [29]. Following [7],
a factor graph of a point process X is a graph whose vertices are the points
of X and whose edges are obtained as a deterministic translation-equivariant
function of X. An important special case of a factor graph is a translation-
equivariant matching; see [6] for some striking results on this topic. Finally,
we refer the interested readers to [18] for very general results regarding factors
of Poisson processes and the well-studied isomorphism problem.

One can ask questions similar to ours about factors in a discrete setting.
Translation-equivariant matchings of i.i.d. coin flips on Zd are considered in
[24] and [28]. Much is known about factors of Bernoulli shifts on Z; for
example, see the monograph of Ornstein [17]. In particular, it is a classical
result of Sinai [23] that if B(p) and B(q) are Bernoulli shifts on {0, 1, . . . , d−
1}Z (i.e., i.i.d. {0, 1, . . . , d − 1}-valued sequences with laws p and q) and the
entropy of p is strictly greater than the entropy of q, then there is a factor
from B(p) to B(q). Recently, Ball [2] proved that, if the entropy of p is
strictly greater than the entropy of q, and p stochastically dominates q, then
in the special case d = 2, there is a factor map φ from B(p) to B(q) that is
monotone (i.e., φ(x)i ≤ xi for almost all x ∈ {0, 1, . . . , d−1}Z and all i ∈ Z).

The factor map φ given in [2] is also finitary; that is, φ is continuous
when {0, 1, . . . , d − 1}Z is endowed with the product topology. Keane and
Smorodinsky improved on results of Ornstein by producing explicit finitary
factors between Bernoulli shifts. We refer the interested reader to the original
papers of Keane and Smorodinsky [12],[13], and the recent survey article on
finitary codes by Serafin [22].

Finally, we also mention the forthcoming work of Angel, Holroyd and Soo
[1] concerning monotone deterministic functions of Poisson point processes
on finite volumes. In particular, if λ > λ′ and X is a Poisson point process of
intensity λ on [0, 1], that article provides a necessary and sufficient condition
on (λ, λ′) for the existence of a monotone deterministic map φ : M → M

such that φ(X) is a Poisson point process on [0, 1] of intensity λ′.
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2 Some remarks about the proofs

We next motivate the proofs of Theorems 1 and 2 via some simple examples
of mappings φ : M → M having some of the required properties. The proof
of Theorem 3 is much shorter and is treated in Section 3. Of course, one of
the requirements of φ is that it be measurable. All the maps we define will
clearly be measurable; we provide the formal definition of the σ-field for M

below.

Measurability. The σ-field M of subsets of M is defined in the following
way. Let N be the natural numbers (including zero) and N̄ be N∪ {∞}. For
B ∈ B, the projection map pB : M → N̄ is defined by pB(µ) = µ(B), for all
µ ∈ M. We let M be the smallest σ-field such that all the projection maps
are measurable. ♦

Note that throughout this paper, the only laws we consider on M will be
homogeneous Poisson point processes on Rd and their restrictions to subsets
of Rd. We say that U is a U[0, 1] random variable if it is uniformly distributed
in [0, 1]. Similarly, we say that V is a U[B] random variable if it is uniformly
distributed in some Borel set B. In the next examples and throughout this
paper, we shall assert that certain random variables can be expressed as
functions of U[0, 1] random variables. This can be justified by appealing to
the Borel isomorphism theorem [25, 3.4.24]. However, very often we need only
the following two results, which are consequences of the Borel isomorphism
theorem. Because of the need for isometry-equivariance in our constructions,
we shall often need to be rather explicit about such functions.

Lemma 5 (Reproduction). There exist measurable deterministic functions
{gi}i∈N

, where gi : [0, 1] → [0, 1], such that if U is a U[0, 1] random variable,
then {gi(U)}i∈N

is a sequence of i.i.d. U[0, 1] random variables.

For an explicit proof, see, for example, [11, Lemma 3.21].

Lemma 6 (Coupling). Let λ > 0. There exists a collection of measurable
mappings φP =

{

φP
A

}

A∈B
, where for each A ∈ B, the map φP

A = φP
(A,λ) :

[0, 1] → M is such that if U is a U[0, 1] random variable, then φP
A(U) is a

Poisson point process on A with intensity λ.

Example 1 (A Zd-translation-equivariant mapping between Poisson point
processes of arbitrary intensities). Let λ, λ′ > 0. Let X be a Poisson point
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process on Rd with intensity λ and law P . Let C0 be a cube of side-length 1
containing the origin 0 ∈ Zd, and let Ci := C0+ i for i ∈ Zd. Assume that C0

is such that the collection P = {Ci}i∈Zd is a partition of Rd. The mapping φ
will be defined by specifying φ(·)

∣

∣

C
for all C ∈ P. We shall define φ only off a

P -null set; it is not difficult to extend φ to all of M so that it still commutes
with all translations of Zd. Let g : [0, 1] → M be a measurable function such
that if U is a U[0, 1] random variable, then g(U) is a Poisson process on C0

with intensity λ′. We shall define a measurable map h : M → [0, 1]Z
d

with the
following properties: h(X) is a collection of i.i.d. U[0, 1] random variables,
and for all translations θ of Zd we have h(θ(X))i = h(X)θ(i) for all i ∈ Zd.
For all i ∈ Zd, let θi(x) = x + i for all x ∈ Rd. Given the mapping h, it easy
to see that by taking

φ(X)
∣

∣

Ci
:= θ−i(g(h(X)i))

for all i ∈ Zd, we have that φ commutes with translations of Zd and that
φ(X) is a Poisson point process on Rd with intensity λ′. It remains to define
h.

If X(C) = 1, then we say that C is special . Let K(i) be the index of
the first special cube to the right of cube i; that is, K(i) = i + (n, 0, . . . , 0)
where n = n(i) is the smallest non-negative integer such that Ci+(n,0,...,0) is
special. Note that P -a.s. K is well defined. For each special cube Ci, let
z(i) be the unique point x ∈ Ci such that X({x}) = 1. Since X is a Poisson
point process, the random variables {X|Ci

}i∈Zd are independent, and also
conditional on the event that Ci is special, z(i) is a U[Ci] random variable.
Let f : C0 → [0, 1]N be a measurable function such that if V is a U[C0]
random variable, then f(V ) is a sequence of i.i.d. U[0, 1] random variables.
For all i ∈ Zd, let

h(X)i := f
(

z(K(i)) − K(i)
)

n(i)
.

It is easy to verify that h satisfies the required properties. ♦

Let us remark that in Example 1 we used the fact that if X is a Poisson
process, then conditional that it has one point in A, the location of that point
is a U[A] random variable. This elementary fact will often be useful and we
shall appeal to it again in the next example and in the proofs of Theorems
1 and 2. We refer the reader to [21, Theorem 1.2.1] or [14] for background
and state a slightly more general result in the lemma below. Let L denote
Lebesgue measure.
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Lemma 7. Let X be a Poisson point process on Rd with intensity λ. Let
A ∈ B be a Borel set with finite Lebesgue measure. Let K be a Poisson
random variable with mean λL(A). Let {Vi}i∈N

be a sequence of i.i.d. U[A]
random variables that are independent of K. Then X

∣

∣

A
has the same law as

Z :=
∑K

i=1 δVi
.

A central requirement in Theorems 1, 2, and 3 is that φ be a deterministic
function of X. The mapping in Example 1 is a deterministic function of X
and commutes with all translations of Zd. Given a U[C0] random variable
V , independent of X, we can modify Example 1 by starting with a randomly
shifted partition {Ci + V }i∈Zd of Rd and obtain a mapping Φ that is a func-
tion of X and V . As a result of starting with a randomly shifted partition,
the joint distribution of (X, Φ(X, V )) is fully translation-invariant. However,
Φ is no longer a deterministic function of X.

Instead of using the lattice Zd, we shall use randomness from the process
to define a partition of Rd. It is straightforward to do this in an isometry-
equivariant way. The difficulty lies in choosing a partition that avoids po-
tential dependency problems.

We now turn our attention to Theorem 1. Let λ > λ′ > 0. It is non-trivial
to show that there exists a (not necessarily translation-equivariant) monotone
mapping which maps a Poisson point process of intensity λ to a Poisson point
process of intensity λ′. In Example 1, we asserted the existence of a certain
coupling between uniform random variables and Poisson point processes via
a measurable function g : [0, 1] → M such that whenever U is a U[0, 1]
random variable, g(U) is a Poisson point process. Due to the monotonicity
requirement in Theorem 1, we require a more specialized coupling.

An important tool in the proof of Theorem 1 will be Proposition 8 below,
which is motivated by one of the key ideas from [3, Lemma 3.1]. Proposition
8 provides a coupling between a Poisson point process X in a finite volume
and another, Y , of lower intensity, such that Y ≤ X and the process X − Y
is also a Poisson point process. The process Y is not a deterministic function
of X, but the coupling has certain other useful properties.

Throughout this paper, it will be convenient to encode randomness as a
function of U[0, 1] random variables, as was done repeatedly in Example 1.
For any point process Z, the support of Z is the random set

[Z] :=
{

x ∈ Rd : Z(x) = 1
}

.

Elements of [Z] are called Z-points. We call a mapping Φ : M× [0, 1] → M
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a splitting if Φ(µ, u) ≤ µ for all (µ, u) ∈ M × [0, 1] and if both Φ(X, U)
and X −Φ(X, U) are Poisson point processes whenever X is a Poisson point
process and U is a U[0, 1] random variable independent of X. For example,
consider the coupling between a Poisson point process X on Rd of intensity
λ and another, Y , of lower intensity λ′, that is given by colouring the points
of X independently of each other red or blue with probabilities λ′

λ
and 1− λ′

λ

and then taking the red points to be the set of Y -points. It is easy to see that
both Y (the red points) and X−Y (the blue points) are independent Poisson
point processes on Rd with intensities λ′ and λ−λ′. This elementary result is
sometimes referred to as the colouring theorem [14] and this coupling can be
expressed as a splitting since all the required coin-flips can be encoded as a
function of a single U[0, 1] random variable. We shall revisit this elementary
coupling in more detail in Section 5. The coupling given by Proposition 8
below is also a splitting.

Proposition 8 (Splitting on finite volumes). Let λ > λ′ > 0. There exists
a finite constant K = K(λ, λ′) and a family φfin of measurable mappings φfin

A

so that for each A ∈ B with finite Lebesgue measure larger than K, the map
φfin

A = φfin
(A,λ,λ′) : M × [0, 1] → M has the following properties:

(a) The map φfin
A is monotone; that is, φfin

A (µ, u) ≤ µ for all (µ, u) ∈ M×[0, 1].

(b) For all (µ, u) ∈ M × [0, 1], we have φfin
A (µ, u) = φfin

A (µ
∣

∣

A
, u).

(c) If X is homogeneous Poisson point processes on Rd with intensity λ and
U is a U[0, 1] random variable independent of X, then φfin

A (X
∣

∣

A
, U) is a

Poisson point process of intensity λ′ on A, and X
∣

∣

A
− φfin

A (X
∣

∣

A
, U) is a

Poisson point process of intensity λ − λ′ on A.

(d) For all (µ, u) ∈ M × [0, 1], if µ(A) = 1, then φfin
A (µ, u) = 0, while if

µ(A) = 2, then φfin
A (µ, u) = µ.

(e) The family of mappings φfin has the following isometry-equivariance prop-
erty: for any isometry θ of Rd, and for all (µ, u) ∈ M × [0, 1],

θ
(

φfin
A (µ, u)

)

= φfin
θ(A)(θ(µ), u) .

We shall prove Proposition 8 in Section 4. Property (d) of Proposition
8 will be vital to the proof of Theorem 1. It states that whenever X

∣

∣

A

has exactly one point in its support, φfin
A (X

∣

∣

A
, U) will have no points, while

8



whenever X
∣

∣

A
has exactly two points in its support, X

∣

∣

A
− φfin

A (X
∣

∣

A
, U) will

have no points. Hence when X
∣

∣

A
has exactly one or two points the locations

of these points provide a possible source of randomness. The next example
will illustrate how property (d) is exploited and will help to motivate the
proof of Theorem 1. To make use of property (d), we shall need the following
elementary lemma.

Let ⊕ denote addition modulo one; that is, for x, y ∈ R, let x ⊕ y be the
unique z ∈ [0, 1) such that x + y − z ∈ Z.

Lemma 9 (Adding U[0, 1] random variables modulo 1). Let U1 and U2 be
U[0, 1] random variables that are measurable with respect to the σ-fields F1

and F2 and such that U1 is independent of F2 and U2 is independent of F1.
If U := U1 ⊕ U2, then U is independent of F1, U is independent of F2, and
U is a U[0, 1] random variable.

Proof. The proof follows from the Fubini theorem and the fact that for every

x ∈ R we have U1 ⊕x
d
= U1. Let E ∈ F2 and let Q be the joint law of U2 and

1E. Let B ∈ B. By symmetry, it is enough to show that P({U ∈ B} ∩ E) =
P(U1 ∈ B)P(E). By the independence of U1 and F2, we have

P({U ∈ B} ∩ E) =

∫

P(U1 ⊕ x ∈ B)i dQ(x, i)

=

∫

P(U1 ∈ B)i dQ(x, i)

= P(U1 ∈ B)P(E) .

Example 2 (A monotone map φ : M → M which maps a Poisson process X
to another of lower intensity such that X − φ(X) is also a Poisson process).
Let λ > λ′ > 0. Let X be a Poisson point process on Rd with intensity λ and
law P . Let P = {Ci}i∈N

be an indexed partition of Rd into equal sized cubes,
all translates of one another, large enough so that the Lebesgue measure of
each cube is larger than the constant K from Proposition 8. The monotone
mapping φ will be defined by specifying φ(·)

∣

∣

C
for all C ∈ P.

Let U = {Ui}i∈N
be a sequence of i.i.d. U[0, 1] random variables that are

independent of X. Let

Φ(X, U) :=
∑

i∈N

φfin
Ci

(X, Ui) ,
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where φfin is the splitting from Proposition 8. The map φ will be defined so

that φ(X)
d
= Φ(X, U) and X − φ(X)

d
= X −Φ(X, U). By properties (c) and

(b) of Proposition 8, we deduce that φ(X) and X − φ(X) are Poisson point
process on Rd with intensities λ′ and λ − λ′.

If X(C) = 1, then we say that C is one-special , while if X(C) = 2,
then we say that C is two-special . Let k1 and k2 be the indices of the
one-special and two-special cubes with the least index, respectively. Note
that P -a.s. k1 and k2 are well defined. Let Z1 be the unique X-point in Ck1 .
Let Z2

1 and Z2
2 be the two X-points in Ck2, where Z2

1 is the one closest to the
origin. Let C0 be the cube containing the origin. Fix a measurable function
fC0

: C0 → [0, 1] such that if V is a U[C0] random variable, then fC0
(V ) is a

U[0, 1] random variable. For each C ∈ P, let c ∈ C be so that C − c = C0

and let fC : C → [0, 1] be defined via fC(x) = fC0
(x − c). Since X is a

Poisson point process, it follows from Lemma 7 that conditional on k1 we
have that Z1 is a U[Ck1] random variable. Moreover it is easy to see that
S1 := fC

k1 (Z
1) is in fact a U[0, 1] random variable independent of

F1 := σ
(

1[X(Ci)6=1]X
∣

∣

Ci
: i ∈ N

)

.

Similarly, it is easy to define S2 as a function of (Z2
1 , Z

2
2) so that S2 is a

U[0, 1] random variable independent of

F2 := σ
(

1[X(Ci)6=2]X
∣

∣

Ci
: i ∈ N

)

,

namely,
S2 := fC

k2
(Z2

1) ⊕ fC
k2

(Z2
2) .

To see why the above definition works, consider the random variables Y1 and
Y2 defined as follows. Choose with a toss of a fair coin (that is independent of
X) one of Z2

1 or Z2
2 to be Y1 and let Y2 be so that {Y1, Y2} = {Z2

1 , Z
2
2}. Clearly

Y1 and Y2 are independent U[Ck2] random variables and S2 = fC
k2

(Y1) ⊕
fC

k2 (Y2).
Note that S1 is measurable with respect to F2 and S2 is measurable with

respect to F 1. Let
S := S1 ⊕ S2 .

By Lemma 9, we have that S is independent of F1 and S is independent of
F2. For all i ∈ N, let

φ(X)
∣

∣

Ci
:= φfin

Ci

(

X, gi(S)
)

,
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where gi is the sequence of functions from Lemma 5. By property (b) of

Proposition 8, we see that φ is monotone. We shall now show that φ(X)
d
=

Φ(X, U) and X − φ(X)
d
= X − Φ(X, U).

Observe that by property (d) of Proposition 8, for each one-special cube
C we have

φ(X)
∣

∣

C
= Φ(X, U)

∣

∣

C
= 0 .

Since S is independent of F 1 and {gi(S)}i∈N

d
= {Ui}i∈N

, we have that

∑

i∈N

1[X(Ci)6=1]φ
fin
Ci

(X, gi(S))
d
=

∑

i∈N

1[X(Ci)6=1]φ
fin
Ci

(X, Ui) .

Thus φ(X)
d
= Φ(X, U). Similarly, by property (d) of Proposition 8, for each

for each one-special cube C we have

(X − φ(X))
∣

∣

C
= (X − Φ(X, U))

∣

∣

C
= 0 .

Since S is independent of F 2, we have that

∑

i∈N

1[X(Ci)6=2]

(

X
∣

∣

Ci
− φfin

Ci
(X, gi(S))

) d
=

∑

i∈N

1[X(Ci)6=2]

(

X
∣

∣

Ci
− φfin

Ci
(X, Ui)

)

.

Thus X − φ(X)
d
= X − Φ(X, U). ♦

As an aside, one might ask whether the two Poisson processes X and
X − φ(X) in Example 2 or Theorem 1 can be made independent of each
other, but it turns out that this is easily ruled out. (It may come as a
surprise that two dependent Poisson processes can have a sum that is still a
Poisson process; see [10].)

Proposition 10. There does not exist a monotone map φ : M → M such
that if X is a homogeneous Poisson point process on Rd, then φ(X) and
X − φ(X) are independent homogeneous Poisson point processes on Rd with
strictly positive intensities.

Proof. Let X be a Poisson point process on Rd with intensity λ > 0. Let
α ∈ (0, 1). Towards a contradiction assume that φ(X) and X − φ(X) are
independent Poisson point processes in Rd with intensities αλ and (1− α)λ.
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Let R and B be independent Poisson point processes on Rd with intensities
αλ and (1 − α)λ. Note that

(R, B, R + B)
d
= (φ(X), X − φ(X), X) . (1)

Now let Z := R + B and let B = B(0, 1) and consider the events

E := {Z(B) = 1} ∩ {R(B) = 1}

and
E ′ := {X(B) = 1} ∩ {φ(X)(B) = 1} .

Clearly, P(E | Z) = α1[Z(B)=1], but since E ′ ∈ σ(X), we have that P(E ′ |

X) = 1E′. Since α ∈ (0, 1), we conclude that P(E | Z) 6
d
= P(E ′ | X), which

contradicts (1).

Outline of the proofs. Following the lead of Examples 1 and 2, we shall
introduce an isometry-equivariant partition of Rd. The partition will con-
sist of globes, which will be specially chosen balls of a fixed radius, together
with a single unbounded part. The partition will be chosen as a deterministic
function of the Poisson process by a procedure that does not need to examine
the Poisson points inside the globes. The precise definition of this partition
and its properties are somewhat subtle; see Sections 5 and 6. The most im-
portant property is that conditional on the partition, the process restricted
to the bounded parts is a Poisson point process that is independent of the
process on the unbounded part. This may be regarded as an extension of the
following property enjoyed by stopping times for a one-dimensional Poisson
process: conditional on the stopping time, the process in the future is a Pois-
son process independent of the process in the past. The precise formulation
of the property we need may be found in Proposition 16.

To prove Theorem 1, we shall employ the splitting from Proposition 8 on
the bounded parts as in Example 2. The Poisson points in the unbounded
part will be split independently of each other with probabilities (λ′

λ
, 1 − λ′

λ
).

When one of the balls of the partition contains exactly one or two points, the
splitting from Proposition 8 is completely deterministic. Thus the locations
of these points provides a source of randomness that can be used to facilitate
the splitting from Proposition 8 on the other balls of the partition, as in
Example 2, and in addition can be used to independently split the points
that do not belong to a bounded part. Of course, we cannot use randomness
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precisely as in Example 2 since that privileges the origin and therefore is not
equivariant. Instead, we use randomness from the available source that is
(essentially) nearest to where it is used.

Aside from some careful bookkeeping to ensure isometry-equivariance, the
two main ingredients for the proof of Theorem 1 are: an isometry-equivariant
partition with the independence property described above, and the splitting
from Proposition 8. Next we focus our discussion on these two ingredients.

The radius R of the balls of the isometry-equivariant partition will depend
on (λ, λ′, d). For all x ∈ Rd and all 0 < s < r, we define the shell centered
at x from s to r to be the set

A(x; s, r) :=
{

y ∈ Rd : s ≤ ‖x − y‖ ≤ r
}

.

Let X be a Poisson point process on Rd and x ∈ Rd. A single ball of radius
R contained in B(x, R + 80) will be chosen to be a globe (a member of
the partition) only if two properties are satisfied: the shell A(x; R + 90 +
d, R + 100 + d) contains no X-points; and the shell A(x; R + 80, R + 90 + d)
is relatively densely filled with X-points, that is, every ball of radius 1/2
that is contained in A(x; R + 80, R + 90 + d) itself contains an X-point. A
minor complication is that the set of x ∈ Rd satisfying these properties is not
discrete, but consists of small well-separated clusters. The centers of mass of
these clusters will be the centers of the globes.

The key step in defining the splitting in Proposition 8 is to construct a
coupling of Poisson random variables with the analogous properties of Propo-
sition 8 (save isometry-equivariance). We shall obtain the joint mass function
of the required coupling by taking finite perturbations of the joint mass func-
tion for two independent Poisson random variables. The calculations become
straightforward when we view the mass function as an infinite matrix satis-
fying certain row and column constraints.

The isometry-equivariant partition used in the proof of Theorem 1 is used
again in the proof of Theorem 2; given this partition, the ideas in Example
1 can be easily adapted to prove a (weaker) translation-equivariant version
of Theorem 2. It requires some additional effort to prove Theorem 2 in its
entirety. The proof of Theorem 4 is not difficult and will follow from the
definitions of the maps in Theorems 1 and 2.

Organization of the paper. The rest of paper proceeds as follows. In
Section 3 we prove Theorem 3. This section is independent of the other

13



sections. Section 4 is devoted to a proof of Proposition 8. In Sections 5
and 6 we specify the properties that the isometry-equivariant partition must
satisfy, and prove that such a partition does indeed exist. In Section 7 we
define some desired properties of a procedure that assigns randomness from
the globes that contain exactly one or two points to the other globes and to
the points of the unbounded part. The proof of Theorem 1 is given in Section
8 and the existence of the procedure that assigns randomness is proved in
Section 9. In Section 10 we prove Theorem 2. In Section 11 we prove Theorem
4. Finally, in Section 12 we state some open problems.

3 Proof of Theorem 3

In this section we shall prove Theorem 3. The proof is by contradiction.
The basic idea is as follows. Let X be a Poisson point process on Rd with
positive intensity λ and law P . Let φ : M → M be strongly finitary with
respect to P such that φ(X) is a Poisson point process on Rd with intensity
λ′ > λ and X ≤ φ(X). Since φ(X) has greater intensity than X, with
non-zero probability we have X(B(0, 1)) = 0 and φ(X)(B(0, 1)) ≥ 1. Since
φ is strongly finitary with respect to P , there is a fixed M such that with
non-zero probability, we also have φ(X)|B(0,1) = φ(X ′)|B(0,1), where X ′ is
equal to X on B(0, M) but is resampled off B(0, M). Define a new simple
point process Z from φ(X) by deleting all points in B(0, 1) and by deleting
each point in [φ(X)|B(0,1)c ] independently with probability λ/λ′ conditional
on φ(X). See Figure 1 for an illustration. Since φ(X) is a Poisson point
process, φ(X)|B(0,1) is independent of φ(X)|B(0,1)c and we may define Z so
that it is independent of φ(X)|B(0,1). Since X ≤ φ(X), there is a non-zero
probability that Z

∣

∣

B(0,M)
= X

∣

∣

A(0;1,M)
. Moreover, conditional on the event

that X(B(0, 1)) = 0 and φ(X)(B(0, 1)) ≥ 1, there is a non-zero probability
that φ(Z)|B(0,1) = φ(X)|B(0,1). Clearly, this contradicts the independence of
Z from φ(X)|B(0,1); the following lemma formalizes this intuition.

Lemma 11. Let (S,S) be a measurable space. If X and Y are independent
random variables taking values in S and A := {y ∈ S : P (Y = y) > 0}, then
P({X = Y } ∩ {Y ∈ Ac}) = 0.

Proof. We apply the Fubini theorem and the independence of X and Y as
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Figure 1: The dots are the original points of X and the squares are points of
φ(X)\X. The shaded region is B(0, 1) and the unshaded ring is A(0; 1, M).
By selecting subsets of the points in A(0; 1, M) uniformly at random there
is non-zero probability that we shall select all the dots.

follows. Let µX be the law of X. Then

P({X = Y } ∩ {Y ∈ Ac}) = P({X = Y } ∩ {X ∈ Ac})

=

∫

Ac

P(Y = x) dµX(x)

=

∫

Ac

0 dµX(x) = 0 .

With Lemma 11 we can now make the above argument for Theorem 3
precise.

Proof of Theorem 3. Let λ′ > λ > 0. Towards a contradiction, let X be a
Poisson point process on Rd with intensity λ and law P . Let φ : M → M be a
mapping that is strongly finitary with respect to P such that X ≤ φ(X) and
φ(X) is a Poisson point process on Rd with intensity λ′. Since X ≤ φ(X)
and φ(X) has greater intensity, we must have that

P
(

{φ(X)(B(0, 1)) ≥ 1} ∩ {X(B(0, 1)) = 0}
)

> 0 .
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For µ ∈ M, let N = N(µ) be the smallest natural number such that for P -a.e.
µ′ ∈ M we have φ(µ)|B(0,1) = φ(µ′)|B(0,1) whenever µ|B(0,N) = µ′|B(0,N). Let

E := {N(X) < M} ∩ {φ(X)(B(0, 1)) ≥ 1} ∩ {X(B(0, 1)) = 0}

for some M > 0. Since φ is strongly finitary with respect to P , we have that
P (N(X) < ∞) = 1 and we may choose M so that

P(E) > 0 . (2)

Note that on the event E we have that

φ(X)|B(0,1) = φ
(

X|A(0;1,M) + W |B(0,M)c

)

|B(0,1) ,

where W is independent of X and has law P . Let U be a U[0, 1] random vari-
able independent of X and W . We shall show that there exists a measurable
function H : M × M × [0, 1] → M such that

P

(

{

H
(

φ(X)|A(0;1,M), W, U
)

= φ(X)|B(0,1)

}

∩ E
)

> 0 . (3)

Define a measurable function s : M× [0, 1] → M such that: if µ(Rd) = ∞,
then s(µ, u) = 0 for all u ∈ [0, 1], while if µ(Rd) < ∞, then [s(µ, U)] is a
uniformly random subset of [µ]. Since X ≤ φ(X) and since U is independent
of X, we claim that for any event E ′ ∈ σ(X) with P(E ′) > 0,

P
(

{

s(φ(X)|A(0;1,M), U) = X|A(0;1,M)

}

∩ E ′
)

> 0 . (4)

To verify (4), let

L :=

∫ 1

0

1
[

s(φ(X)|A(0;1,M), u) = X|A(0;1,M)

]

du .

By the Fubini theorem and the independence of X and U , we have that

P

(

{

s(φ(X)|A(0;1,M), U) = X|A(0;1,M)

}

∩ E ′
)

= EL1E′ .

Observe that from the definition of s and the fact that X ≤ φ(X), we
must have that L > 0 P -a.s. Since 1E′ ≥ 0 and E1E′ > 0, it follows that
EL1E′ > 0.
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Hence taking E ′ = E, from (2) and (4) we have that

P
({

s(φ(X)|A(0;1,M), U) = X|A(0;1,M)

}

∩ E
)

> 0 . (5)

For all (µ, µ′, u) ∈ M × M × [0, 1], define

H(µ, µ′, u) := φ
(

s(µ|A(0;1,M), u) + µ′|B(0,M)c

)

|B(0,1) .

From (5), the definition of H and the definition of E, it is obvious that (3)
holds.

Since φ(X) is a Poisson point process, φ(X)|B(0,1) and φ(X)|A(0;1,M) are in-
dependent and since U and W are independent of X, we have that φ(X)|B(0,1)

is independent of H
(

φ(X)|A(0;1,M), W, U
)

. In addition, P(φ(X)|B(0,1) = µ) =
0 for all µ ∈ M \ {0} and φ(X)|B(0,1) 6= 0 on the event E. Thus equation (3)
contradicts Lemma 11.

4 Proof of Proposition 8

The proof of Proposition 8 is based on a specific coupling of two Poisson
random variables.

Lemma 12. For any α ∈ (0, 1), there exists a k(α) such that if λ > k(α),
then there exist random variables X and Y such that X, Y and X + Y have
Poisson distributions with respective means αλ, (1 − α)λ and λ, and

P(Y = 0 | X + Y = 1) = 1 = P(X = 0 | X + Y = 2) .

Proof. Write πγ
i := e−γγi/i! for the Poisson probability mass function. We

must find an appropriate joint mass function for X and Y , i.e., an element
Q of the vector space RN2

with all components non-negative and satisfying

∑

j

Qi,j = παλ
i ,

∑

i

Qi,j = π
(1−α)λ
j ,

∑

i

Qi,k−i = πλ
k , (6)

and
Q0,1 = Q1,1 = Q2,0 = 0 . (7)

Let P ∈ RN2
be the mass function for independent Poisson random vari-

ables, i.e., Pi,j := παλ
i π

(1−α)λ
j , and note that P satisfies (6) (with P in place of

17



Q). For s, t ∈ N define Es,t ∈ RN
2

by Es,t
i,j := 0 for (i, j) /∈ [s, s+2]× [t, t+2],

and

Es,t
i,j :=

i � j t t + 1 t + 2
s 0 -1 1

s + 1 1 0 -1
s + 2 -1 1 0

and note that
∑

j Es,t
i,j =

∑

i E
s,t
i,j =

∑

i E
s,t
i,k−i = 0.

Now let

Q := P + P0,1E
0,0 − (−P0,1 + P2,0)E

1,0 − (−P0,1 + P2,0 + P1,1)E
0,1 .

From the definition of Q, it is easy to verify that (7) holds. (The idea is that
adding a multiple of Es,t moves mass from location (s, t + 1) to (s + 1, t),
without affecting the locations (i, j) with i + j ≤ s + t. First we transfer
mass P0,1 from location (0, 1) to (1, 0); this results in mass P2,0−P0,1 at (2, 0),
which we then transfer to (1, 1); finally we similarly transfer the current mass
at (1, 1) to (0, 2).) The equalities (6) follow from the above observations on
sums involving P and E, so it remains only to check non-negativity of Q for
λ sufficiently large. This follows on noting that for some c = c(k, α) > 0 we
have Pi′,j′ ≥ cλPi,j whenever i+ j = k and i′ + j ′ = k +1; therefore it suffices
to take λ large enough compared with c(1, α)−1, . . . , c(4, α)−1.

For later convenience we next rephrase Lemma 12 in terms of a mapping
that constructs X from X + Y .

Corollary 13. For any α ∈ (0, 1), there exist a k(α) and a measurable
function F : N × [0, 1] → N with the following properties:

(a) For all (n, u) ∈ N × [0, 1], we have that F (n, u) ≤ n.

(b) For all u ∈ [0, 1], we have that F (1, u) = 1 and F (2, u) = 0.

(c) If X̄ is a Poisson random variable with mean λ̄ > k(α) and U is a U[0, 1]
random variable independent of X̄, then F (X̄, U) and X̄ − F (X̄, U) are
Poisson random variables with means αλ̄ and (1 − α)λ̄ respectively.

Proof. Let α ∈ (0, 1) and k(α) be as in Lemma 12. Let X̄ be a Poisson
random variable with mean λ̄ > k(α) and let U be a U[0, 1] random variable
independent of X̄. By Lemma 12, let X and Y be Poisson random variables

with means αλ and (1 − α)λ such that X + Y
d
= X̄. Define F so that

(X̄, F (X̄, U))
d
= (X + Y, X) .
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With Corollary 13 the proof of Proposition 8 is relatively straightforward,
except that property (e) requires a little care. We next present some defini-
tions and elementary facts about Poisson processes that will be useful in the
proof and in the rest of the paper.

Recall that for µ ∈ M, we denote the restriction of µ to a set A ∈ B via:

µ
∣

∣

A
(·) := µ(· ∩ A) .

Recall that ‖ · ‖ is the Euclidean norm in Rd. We say that the inter-point
distances of a point measure µ ∈ M are distinct if for all x, y, u, v ∈ [µ] such
that {x, y} 6= {u, v} and x 6= y, we have that ‖x − y‖ 6= ‖u − v‖.

Lemma 14 (Elementary facts about Poisson point processes). Let X be a
Poisson point process on Rd with positive intensity and law P .

(a) Let a ∈ Rd. The distances from the X-points to the point a are distinct
P -a.s.

(b) For all d ≥ 1, the inter-point distances of X are distinct P -a.s.

(c) P -a.s., every set of d elements of [X] has linear span equal to all of Rd.

Proof. The proof follows easily from Lemma 7.

Proof of Proposition 8. Let X be a Poisson point process on Rd with inten-
sity λ > 0. Let α := λ/λ′ and let k(α) be defined as in Corollary 13. Let
K > 0 be so that λ̄ := Kλ > k(α). Let A ∈ B have Lebesgue measure
larger than K. Let X̄ := X(A), so that X̄ is a Poisson random variable.
Let F be a function as in Corollary 13. Let U be a U[0, 1] random variable
independent of X. Let g1, g2 : [0, 1] → [0, 1] be two functions as in Lemma
5 so that U1 := g1(U) and U2 := g2(U) are independent U[0, 1] random vari-
ables. Note that by property (a) of Corollary 13, F (X(A), U1) ≤ X(A). We
shall define φfin

A so that [φfin
A (X, U)] is a subset of [X|A] of size F (X(A), U1).

Moreover, conditional on F (X(A), U1) = j, each subset of [X|A] of size j will
be chosen uniformly at random using the randomness provided by U2. To do
this carefully, we shall tag the points in [X|A] and specify a way to use the
randomness provided by U2.

Consider the following enumeration of the points in [µ|A]. The center

of mass of a Borel set C with positive finite Lebesgue measure L(C) > 0
is given by

1

L(C)

∫

C

x dL(x) ∈ Rd . (8)
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Let a be the center of mass of A. We say that µ admits the centric enu-

meration on A if µ(A) > 0 and if the distances from a to the points in
[µ|A] are distinct. The centric enumeration on A is given by the bijection
ι = ιµ : [µ|A] → {1, 2, . . . , µ(A)}, where ι(x) < ι(y) iff ‖x − a‖ < ‖y − a‖.
Note that by Lemma 14, part (a), X admits the centric enumeration on A
Pλ-a.s. when X(A) > 0.

Now we define some auxiliary functions that, when composed with U[0, 1]
random variables, yield random variables with certain distributions. For any
set B, let P(B) denote the set of all subsets of B. Let {si,j}j≤i

be a collection
of measurable functions where si,j : [0, 1] → P({1, 2, . . . i}) and if U ′ is a
U[0, 1] random variable, then si,j(U

′) is uniformly distributed over subsets of
size j of {1, 2 . . . , i}.

For all µ ∈ M that do not admit the centric enumeration on A, set
φfin

A (µ, u) = 0 for all u ∈ [0, 1]. Otherwise, for (µ, u) ∈ M × [0, 1], we proceed
as follows. If µ(A) = i, let ι : [µ|A] → {1, . . . , i} be the centric enumeration.
Let F (i, g1(u)) = j. Define φfin

A (µ, u) to be the simple point measure with
support {x ∈ [µ|A] : ι(x) ∈ si,j(u)}.

Clearly, by definition, φfin
A is monotone and φfin

A (µ, u) = φfin
A (µ|A, u). From

Corollary 13, property (c), it is immediate that φfin
A (X, U)(A) and X(A) −

φfin
A (X, U)(A) are Poisson random variables with means λ′L(A) and (λ −

λ′)L(A) respectively. Moreover it is easy to check with the help of Lemma
7 that in fact φfin

A (X, U) and X
∣

∣

A
− φfin

A (X, U) are Poisson point processes
on A with intensities λ′ and λ − λ′ respectively. Thus properties (c), (a)
and (b) all hold. It is easy to see that property (d) is also inherited from
property (b) of Lemma 13. Moreover we have the required property (e) since
we enumerated the points in the support of µ|A in an isometry-equivariant
way via the centric enumeration, while the functions g1, g2, fi, si,j are fixed
functions independent of µ and A.

5 Selection Rules

We shall now define an important class of isometry-equivariant partitions
that will have a certain independence property. Recall that the open ball

of radius r centered at x is denoted by B(x, r) :=
{

y ∈ Rd : ‖x − y‖ < r
}

.
The closed ball is denoted by B̄(x, r) :=

{

y ∈ Rd : ‖x − y‖ ≤ r
}

. Let F ⊂ B
denote the set of closed subsets of Rd. An R-selection rule is a mapping
Ψ : M → F that has the following properties.
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(a) If X is a Poisson point process on Rd with intensity λ > 0 and law Pλ,
then Pλ-a.s. Ψ(X) is a non-empty union of disjoint closed balls of radius
R.

(b) The map Ψ is isometry-equivariant; that is, for all isometries θ of Rd and
all µ ∈ M, we have that Ψ(θµ) = θΨ(µ).

(c) For all µ, µ′ ∈ M, provided µ and µ′ agree on the set

H(µ) = HΨ(µ) :=

(

⋃

x∈Ψ(µ)

B̄(x, 2)

)c

, (9)

we have that Ψ(µ) = Ψ(µ′).

(d) The map Ψ is measurable; see below for the precise meaning of this.

Let Ψ be an R-selection rule and let µ ∈ M. We call the connected com-
ponents of Ψ(µ) the globes (under µ) and we denote the set of globes by
Globes[Ψ(µ)]. The ether is Ψ(µ)c := Rd \Ψ(µ). Note that the set of globes
together with the ether form an isometry-equivariant partition of Rd.

The idea behind the key condition (c) is that Ψ(µ) is determined only by
the restriction of µ to Ψ(µ)c (for technical reasons it is convenient to insist
that it is determined even on the smaller set H(µ) ⊂ Ψ(µ)c). This will have
the consequence that for a Poisson point process X, conditional on Ψ(X),
the process restricted to Ψ(X) is still a Poisson point process.

Proposition 15. For all d ≥ 1 and all R > 0, there exists an R-selection
rule.

We postpone the construction of selection rules until Section 6. Some-
times when the value of R is not important we shall refer to Ψ simply as a
selection rule. The key property of selection rules is the following.

Proposition 16 (Key equality). Let X and W be independent Poisson point
process on Rd with the same intensity. For a selection rule Ψ, the process
Z := W

∣

∣

Ψ(X)
+ X

∣

∣

Ψ(X)c has the same law as X, and Ψ(X) = Ψ(Z).

Proposition 16 states that conditional on Ψ(X), not only is X|Ψ(X) a
Poisson point process on Ψ(X), it is also independent of X|Ψ(X)c .
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Some Remarks on Measurability. It will be obvious from our construc-
tion of selection rules that measurability will not be an issue. However, for
the sake of completeness and since we want to prove Proposition 16 before
providing the explicit construction of selection rules, we assign the Effros σ-
algebra to F. For each compact set K ∈ B, let FK := {F ∈ F : F ∩ K 6= ∅}.
The Effros σ-algebra for F is generated by the sets FK for all compact sets
K ∈ B. Let (Ω,F , P) be a probability space. We call a measurable function
X : Ω → F a random closed set . Thus if X is a Poisson point process
and Ψ is a selection rule, then Ψ(X) is a random closed set. We shall not
need to use any results from the theory of random closed sets; we refer the
interested reader to [16] for background.

Remarks on the Proof of Proposition 16. It is immediate from prop-
erty (c) that Ψ(X) = Ψ(Z). The isometry-equivariance of selection rules
(property (b)) will not play a role in the proof of Proposition 16. For the
purposes of the following discussion, let us assume that Ψ does not have
to satisfy property (b). Temporarily suppose instead that Ψ satisfies the
following additional requirement.

(b′) There exists a fixed Borel set D such that if X is a Poisson point process
on Rd, then Ψ(X) ⊂ D ⊂ HΨ(X)c.

By property (c) in the definition of a selection rule, it is easy to see that
Ψ(X) is σ(X|Dc)-measurable. Since X|D and X|Dc are independent, we have
that

W
∣

∣

D∩Ψ(X)
+ X

∣

∣

D∩Ψ(X)c

d
= X

∣

∣

D
,

where W
d
= X and W is independent of X. Moreover, one can verify (see

Lemma 18 below) that

W
∣

∣

D∩Ψ(X)
+ X

∣

∣

D∩Ψ(X)c + X
∣

∣

Dc

d
= X. (10)

If Ψ satisfies condition (b′), then the left-hand side of (10) equals W
∣

∣

Ψ(X)
+

X
∣

∣

Ψ(X)c and Lemma 16 follows.

The above argument suggests that to prove Proposition 16, we should
examine events where Ψ(X) is contained in some deterministic set. However
in general, such events will have probability zero. We can overcome this
problem by considering events where for some bounded Borel set A, we have
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that Ψ(X)∩A is contained in some deterministic set. For each bounded Borel
set A, Lemma 17 below specifies some additional useful properties that we
require of such events.

Lemma 17. Let X be a Poisson point process on Rd with positive inten-
sity. Let Ψ be an R-selection rule and let H be defined as in (9). Let A
be a bounded Borel set. There exists a finite set F , a collection of disjoint
events {E(α)}α∈F , and a collection of bounded Borel sets {D(α)}α∈F with
the following properties:

(i) For all α ∈ F , on the event E(α), we have that

Ψ(X) ∩ A ⊂ D(α) ⊂ H(X)c .

(ii) For all α ∈ F , the event E(α) is σ(X
∣

∣

D(α)c)-measurable.

(iii) The disjoint union
⋃

α∈F E(α) is an event of probability one.

We shall prove this later.
The following lemma will be useful in the proof of Proposition 16. In par-

ticular, it justifies equation (10) when Ψ satisfies condition (b′). The lemma
is a technical generalization of the fact if X and W are two independent
Poisson point processes on Rd with the same intensity, then for all s ∈ B we
have

W |s + X|sc
d
= X. (11)

Lemma 18. Let X and W be Poisson point processes with the same intensity
on some Borel set D ⊂ Rd. Let T be a random closed set and let S := T ∩D.
Let Y be any point process and let V be an event. Let S ′ := D \ S. If W is
independent of (X ,S,Y,V) and if X is independent of (S,Y,V), then for all
measurable sets of point measures A ∈ M,

P

(

{X + Y ∈ A} ∩ V
)

= P

(

{

W
∣

∣

S
+ X

∣

∣

S′
+ Y ∈ A

}

∩ V
)

.

Proof. Let µX be the law of X and let Q be the joint law of S,Y and 1V .
From (11) it is easy to see that for all Borel s ⊂ D and for all A′ ∈ M,

∫

1[x|s+x|s′∈A
′] dµX (x) = P(X ∈ A′)

= P(W|s + X |s′ ∈ A′)

=

∫ ∫

1[w|s+x|s′∈A
′] dµX (w) dµX (x). (12)
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Let A ∈ M and L := P

(

{X + Y ∈ A}∩V
)

. By the independence of X and

(S,Y,V), we have that

L =

∫ ∫

1[x+y∈A]v dµX (x)dQ(s, y, v)

=

∫
(

∫

1[x|s+x|s′+y∈A] dµX (x)

)

v dQ(s, y, v). (13)

Applying (12) to (13), we obtain that

L =

∫ ∫ ∫

1[w|s+x|s′+y∈A]v dµX (w)dµX (x) dQ(s, y, v) . (14)

Since X and W are independent and (X ,W) and (S,Y,V) are independent,
we easily recognize that the right-hand side of equation (14) is equal to

P

(

{

W
∣

∣

S
+ X

∣

∣

S′
+ Y ∈ A

}

∩ V
)

.

With the help of Lemmas 17 and 18 we now prove Proposition 16.

Proof of Proposition 16. Let X, W : Ω → M be independent Poisson point
processes on Rd with the same intensity, defined on the probability space
(Ω,F , P). We shall use ω to denote an element of the probability space, and
during this proof X(ω) will denote the point measure that is the image of ω
under the random variable X (not “the number of X-points in ω”). Let Ψ be
an R-selection rule and let Z := W

∣

∣

Ψ(X)
+ X

∣

∣

Ψ(X)c . Let A ∈ M. It suffices

to show that P (X|A ∈ A) = P (Z|A ∈ A) for all bounded Borel sets A. Let
A be a bounded Borel set and let {E(α)}α∈F and {D(α)}α∈F be collections
of events and subsets of Rd that satisfy the conditions of Lemma 17. We
shall show that for all α ∈ F ,

P
(

{X|A ∈ A} ∩ E(α)
)

= P
(

{Z|A ∈ A} ∩ E(α)
)

. (15)

By summing over all α ∈ F , we can then conclude by property (iii) of
Lemma 17 that P (X|A ∈ A) = P (Z|A ∈ A). Let us fix α ∈ F and set
E := E(α) and D := D(α). Observe that for all ω1, ω2 ∈ E, we have
Ψ(X(ω1)) = Ψ(X(ω2)) whenever X(ω1) = X(ω2) on Dc. This follows from
property (c) in the definition of a selection rule and property (i) of Lemma
17. Now define S := Ψ(X|Dc). Clearly, S is σ(X|Dc)-measurable and on the
event E, we have that S = Ψ(X). Since X is a Poisson point process, we
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have that X|D∩A is independent of X|Dc∩A. Also, by property (ii) of Lemma
17 we have that E ∈ σ(X|Dc). By applying Lemma 18 with the following
substitutions:

D = D ∩ A , X = X|D∩A , W = W |D∩A ,

T = S , S = S ∩ D ∩ A , Y = X|Dc∩A , V = 1E ,

it is easy to check that

P
(

{X|A ∈ A} ∩ E
)

= P
(

{W |D∩A∩S + X|D∩A∩Sc + X|Dc∩A ∈ A} ∩ E
)

.

Thus from the definition of S and property (i) of Lemma 17, we have that

P
(

{X|A ∈ A} ∩ E
)

= P
( {

W |Ψ(X)∩A + X|Ψ(X)c∩A ∈ A
}

∩ E
)

.

By the definition of Z, we see that we have verified equation (15) as required.

It remains to prove Lemma 17.

Proof of Lemma 17. We need some preliminary definitions. The open cube

of side length 2r centered at the origin is the set (−r, r)d. The diameter of
a set A ⊂ Rd is supx,y∈A ‖x−y‖. Let X be a Poisson point process on Rd and
let Ψ be an R-selection rule. Recall that by property (a) in the definition
of a selection rule, all globes are balls of radius R. Fix a bounded Borel set
A. Let A′ :=

⋃

x∈A B(x, 2R). Let {ci}
N
1 be a collection of disjoint cubes of

diameter 1
2

such that their union contains the set A′. Thus, some cubes may
not be open. Let ai ∈ ci be the centers of the cubes. Let Fi be the event
that the center of some globe (under X) is an element of the cube ci. For a
binary sequence α ∈ {0, 1}N of length N , define

E(α) :=
(

⋂

1≤i≤N :
α(i)=1

Fi

)

∩
(

⋂

1≤i≤N :
α(i)=0

F c
i

)

.

Set F :=
{

α ∈ {0, 1}N : P(E(α)) > 0
}

. Note that the events {E(α)}α∈F

are disjoint and their union over all α is an event of probability 1, so that
condition (iii) is satisfied. Note that if x ∈ Rd and ‖x − ai‖ ≤ 1

2
, then

B̄(x, R) ⊂ B(ai, R + 1) ⊂ B̄(x, R + 2) . (16)
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Figure 2: The grid is an illustration of the cubes ci. The black squares are
the centers of the globes. The hatched discs are the globes, the union of the
shaded discs is the set D(α) that contains the globes intersecting A, and the
area contained in the largest circles is part of the set H(X)c.

Define
D(α) :=

⋃

1≤i≤N :
α(i)=1

B(ai, R + 1) .

Since every globe that intersects A has its center lying at distance at most
R from A, every globe that intersects A must have a center in some cube ci.
By definition, for every α ∈ F , on the event E(α) we see from (16) and (9)
that

Ψ(X) ∩ A ⊂ D(α) ⊂ H(X)c ,

since the diameter of each cube ci is 1
2
. See Figure 2 for an illustration.

Thus condition (i) is satisfied. Observe that for each α ∈ F , we have that
E(α) ∈ σ(X|D(α)c) by property (c) in the definition of a selection rule, so
that condition (ii) is also satisfied.

Proposition 16 will be instrumental in proving Theorems 1 and 2. In
Corollary 20 below, we make an important step in this direction by con-
structing a splitting that involves different mechanisms on the globes and on
the ether. Before stating this result, we need some preliminary definitions.
In particular, recall the elementary fact that if each point of a Poisson point
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process X with intensity λ is deleted independently of all others with prob-
ability λ′

λ
, where λ′ < λ, then the remaining points and the deleted points

form independent Poisson point processes with intensities λ′ and λ − λ′. To
facilitate later variations on this theme, we shall give a very explicit version
of this fact.

Sometimes it will be convenient to specify a well ordering of the sets [µ],
[µ|Ψ(µ)c ] and Globes[Ψ(µ)]. This can be done in the following way. Consider
the ordering ≺ on Rd in which x ≺ y iff ‖x‖ < ‖y‖ or iff ‖x‖ = ‖y‖ and x is
less than y in the lexicographic ordering of Rd. Thus we can well order [µ]
and [µ|Ψ(µ)c ] via ≺ and well order Globes[Ψ(µ)] by well ordering the centers
of the globes via ≺. We shall call ≺ the radial ordering .

Define F coin = F coin
(λ,λ′) : Rd × [0, 1] → M via

F coin(x, u) := 1
[u≤λ′

λ
]
δx . (17)

Define φind = φind
(λ,λ′) : M × [0, 1] → M by

φind
(λ,λ′)(µ, u) :=

∞
∑

i=1

F coin
(λ,λ′)(xi, gi(u)), (µ, u) ∈ M × [0, 1] , (18)

where {xi}
∞
i=1 is [µ] ordered by ≺ and the gi are from Lemma 5. We shall

call φind the standard splitting . The following fact is elementary.

Lemma 19 (Independent splitting). If X is a Poisson point process on Rd

with intensity λ and U is a U[0, 1] random variable independent of X, then
for all A ∈ B and for all λ′ < λ we have that φind

(λ,λ′)(X|A, U) and X|A −

φind
(λ,λ′)(X|A, U) are independent Poisson point processes on A with intensities

λ′ and λ − λ′ respectively.

Corollary 20. Let X be a Poisson point process on Rd with intensity λ
and let λ′ < λ. Let φfin be the splitting from Proposition 8. Let Ψ be an
R-selection rule, where the Lebesgue measure of B(0, R) is larger than that
of the constant K(λ, λ′) from Proposition 8. Let {bi}i∈Z+ = Globes[Ψ(X)],
where we have ordered the globes via the radial ordering. Let U be a U[0, 1]
random variable independent of X and let gi : [0, 1] → [0, 1] be a sequence of
functions as in Lemma 5. The mapping Φ = Φ(λ,λ′) defined by

Φ(X, U) :=
∑

i∈Z+

φfin
(bi,λ,λ′)(X

∣

∣

bi
, gi(U)) + φind

(λ,λ′)(X
∣

∣

Ψ(X)c , g0(U))
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is a splitting such that Φ(X, U) and X−Φ(X, U) are Poisson point processes
with intensities λ′ and λ − λ′.

Proof. The inequality Φ(X, U) ≤ X is obvious from the definition of Φ, so we
just need to check that Φ(X, U) and X−Φ(X, U) have the right distributions.
This is made possible via Proposition 16. Let W be a Poisson point process
on Rd with intensity λ that is independent of X and U . Let U1, U2 be
independent U[0, 1] random variables that are also independent of X and W .
From the definition of φind, it is easy to see that

φind
(λ,λ′)(W |Ψ(X) + X|Ψ(X)c, U1)

d
= φind

(λ,λ′)(W
∣

∣

Ψ(X)
, U1) + φind

(λ,λ′)(X
∣

∣

Ψ(X)c , U2) ,

since the ordering of the points of W |Φ(X) + X|Φ(X)c is irrelevant as long as
the ordering is independent of U1 and U2. By Proposition 16, we have that

X
d
= W |Φ(X) + X|Φ(X)c , so we obtain that

φind
(λ,λ′)(X, U1)

d
= φind

(λ,λ′)(W
∣

∣

Ψ(X)
, U1) + φind

(λ,λ′)(X
∣

∣

Ψ(X)c , U2) . (19)

From property (c) of Proposition 8 and Lemma 19, it is easy to see that for
any A ∈ B with Lebesgue measure larger than K, we have

φfin
A (W |A, U1)

d
= φind(W |A, U1) .

Moreover, since X and W are independent, it follows that

P

(

∑

i∈Z+

φfin
bi

(W |bi
, gi(U1)) ∈ ·

∣

∣ X

)

= P
(

φind(W |Ψ(X), U1) ∈ ·
∣

∣ X
)

. (20)

(Recall that {gi(U)}i∈N
is a sequence of i.i.d. U[0, 1] random variables.)

Clearly by Proposition 16 and the definition of Φ, we have

Φ(X, U)
d
= Φ(W |Ψ(X) + X|Ψ(X)c , U)
d
=

∑

i∈Z+

φfin
bi

(W |bi
, gi(U1)) + φind(X|Ψ(X)c , U2) .

From equation (20) and the fact that X and W are independent, it is
easy to verify that

Φ(X, U)
d
= φind(W

∣

∣

Ψ(X)
, U1) + φind(X|Ψ(X)c, U2) . (21)
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Putting (19) and (21) together, we obtain that Φ(X, U)
d
= φind

(λ,λ′)(X, U1).

Thus from Lemma 19 we have verified that Φ(X, U) is a Poisson point process
of intensity λ′.

The proof that X −Φ(X, U) is a Poisson point process of intensity λ−λ′

follows by the same argument since φfin is a splitting by Proposition 8 and
φind is a splitting by Lemma 19.

Let us remark that for Corollary 20, in order for Φ to be a splitting we
must apply the splitting φfin in all the globes and not just the special ones.
For example, if X is a Poisson point process on a bounded Borel set B,
the following procedure will not result in a splitting: apply φfin if there are
exactly one or two X points, otherwise apply φind.

Before we begin the proof of Theorem 1, we first provide a construction
of selection rules along with some other minor constructions that will be
needed.

6 Construction of Selection Rules

Fix d ≥ 1 and R > 0. We shall now construct an R-selection rule. We need
some preliminary definitions. Recall the definition of the shell

A(x; s, r) :=
{

y ∈ Rd : s ≤ ‖x − y‖ ≤ r
}

.

Let X be a Poisson point process on Rd with intensity λ > 0 and law Pλ. A
point x ∈ Rd is called a pre-seed if B(x, R + 100 + d) has the following two
properties:

(a) X
(

A(x; R + 90 + d, R + 100 + d)
)

= 0;

(b) for every open ball B of radius 1
2

satisfying B ⊂ A(x; R+80, R+90+d),
we have X(B) ≥ 1.

Given µ ∈ M, we also say that x is pre-seed under µ if (a) and (b) hold with
X replaced by µ. If x is a pre-seed, we call A(x; R + 90 + d, R + 100 + d) the
associated empty shell and A(x; R + 80, R + 90 + d) the associated halo.
Clearly pre-seeds exist Pλ-a.s. An R-selection rule will be defined so that its
globes will be balls of radius R contained in B(x, R + 80) for some pre-seed
x. See Figure 3 for an illustration of a pre-seed.

29







Figure 3: An illustration of a pre-seed. The outer ring (the empty shell)
contains no X-points. The intermediate ring (the halo) is relatively densely
filled with X-points. The shaded area is unspecified in terms of X.

Observe that if x, y ∈ Rd are pre-seeds, then ‖x− y‖ 6∈ (2, 2(R+88+d));
otherwise the empty shell of one pre-seed would intersect the halo of the
other in such a way as to contradict the definition of a pre-seed. We say
that two pre-seeds x, y are related if ‖x− y‖ ≤ 2. This gives an equivalence
relation on the pre-seeds.

Lemma 21. If X is a Poisson point process on Rd with positive intensity
and law P , then every equivalence class of pre-seeds under X is an open set
with positive finite Lebesgue measure P -a.s.

Proof. Let C be an equivalence class of pre-seeds under X. Let a ∈ C.
We shall find an open ball centered at a that is contained in C. Define
the distance between two sets A, B in the standard way: ‖A − B‖ :=
infx∈A,y∈B ‖x − y‖. Define the following:

δ1 := ‖A(a; R + 90 + d, R + 100 + d) − [X]‖ ,

δ2 := sup
{

r : ∃x (B(x, r) ⊂ A(a; R + 80, R + 90 + d)

and X
(

B(x, r)
)

= 0)
}

,

δ := min(δ1, δ2,
1

2
− δ2)/4 .
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In words, δ1 is the distance from the empty shell to the nearest X-point.
Clearly, δ1 ∈ (0, 1). Also, δ2 is the radius of the largest ball inside the halo
that contains no X-point. Clearly δ2 ∈ (0, 1

2
). We easily see that for all

x ∈ Rd, if ‖x − a‖ < d, then x ∈ C.

We next choose a representative from each equivalence class in an
isometry-equivariant way. Let C be an equivalence class of pre-seeds un-
der µ. If C has positive Lebesgue measure (which happens almost surely for
the Poisson point process), then we take c ∈ Rd to be its center of mass and
declare that c is a seed . Note that since C is a set of diameter at most 2, it
is easy to see that C is contained in some ball of radius 2 that also contains
the center of mass, whenever the center of mass exists. Note that c might
not be a pre-seed (but it has properties similar to a pre-seed).

If c is a seed (under µ), we call B̄(c, R) a globe (under µ). Define the
mapping ΨR : M → F by stipulating that for each µ ∈ M, the Borel set
ΨR(µ) is the union of the set of globes under µ. Given any two seeds, it is
easy to see that their globes do not intersect. Thus the definition of a globe
given here is consistent with the definition of a globe given in Section 5.

Next, we show that for R > 0, the mapping ΨR is a selection rule, thus
proving Proposition 15.

Lemma 22. Let Ψ = ΨR be the mapping defined above. For all µ, µ′ ∈ M,

if µ = µ′ on H(µ) :=
(

⋃

x∈Ψ(µ) B̄(x, 2)
)c

, then µ and µ′ have the same

pre-seeds.

Proof. Assume that µ and µ′ agree on H(µ). Let z ∈ Rd be a pre-seed under
µ. We claim that

µ
∣

∣

A(z;R+80,R+100+d)
= µ′

∣

∣

A(z;R+80,R+100+d)
,

from which we deduce that z is also a pre-seed under µ′.
Let C(z) be the equivalence class of pre-seeds to which z belongs. Let c

be the center of mass of C(z), so that c is a seed under µ. Since c has distance
at most 4 from z and z has distance at least 2(R+88+ d) from any pre-seed
(under µ) not in C(z), we have that c has distance at least 2(R +88+ d)− 4
from any pre-seed (under µ) not in C(z). Let m > 0 be the minimal distance
from c to another seed (under µ). Clearly m ≥ 2(R+88+d)−8. Since µ = µ′

on H(µ), we have that µ
∣

∣

A(c;R+2,m−R−2)
= µ′

∣

∣

A(c;R+2,m−R−2)
. Since z has

distance at most 4 from c, clearly µ
∣

∣

A(z;R+80,R+100+d)
= µ′

∣

∣

A(z;R+80,R+100+d)
.
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Therefore, H(µ′) ⊆ H(µ). Since µ = µ′ on H(µ′), our claim, and the result,
follow.

Proof of Proposition 15. Let R > 0 and d ≥ 1. We shall now check that
Ψ = ΨR is indeed an R-selection rule.

Property (a): Let P be the law of a Poisson point process on Rd with
positive intensity. Note that pre-seeds occur P -a.s. By Lemma 21 we have
that for P -a.e. µ ∈ M, every equivalence class of pre-seeds under µ has a
well-defined center of mass, which in turn is a seed. Therefore, we have that
seeds occur P -a.s. and Ψ(µ) 6= ∅ for P -a.e. µ. Also, by definition, if Ψ(µ) 6= ∅,
then Ψ(µ) is a disjoint union of balls of radius R.

Property (b): Let θ be an isometry of Rd. If x ∈ Rd is a pre-seed under µ,
then θ(x) is a pre-seed under θ(µ). Therefore if C is an equivalence class of
pre-seeds under µ ∈ M, then θ(C) is an equivalence class of pre-seeds under
θ(µ). If c is the center of mass of C, then θ(c) is the center of mass of θ(C).
Hence if b is globe under µ, then θ(b) is a globe under θ(µ). So clearly, Ψ is
isometry-equivariant.

Property (c): Let µ, µ′ ∈ M and assume that µ = µ′ on H(µ). By
Lemma 22, µ and µ′ have the same pre-seeds. Thus, they have the same
seeds and hence the same globes. Therefore by the definition of Ψ, we have
Ψ(µ) = Ψ(µ′).

7 Encoding and Distributing Randomness

Unfortunately, our proofs of Theorems 1 and 2 do not follow from Proposition
16 alone. Recall that in Examples 1 and 2 we partitioned Rd into cubes, and
the cubes that contained exactly one or two Poisson points were special.
The locations of the Poisson points in a special cube were converted into
sequences of i.i.d. U[0, 1] random variables whose elements were then assigned
to the other cubes of the partition. The purpose of this section is to state a
lemma that asserts the existence of a function that encapsulates the task of
encoding and distributing randomness in the more complicated case where a
deterministic partition is replaced by the selection rule from Section 6, and
Example 2 is replaced by Theorem 1.

Let Ψ be a selection rule. We say that a globe under µ is one-special

if it happens to contain exactly one µ-point, and two-special if it hap-
pens to contain exactly two µ-points. A globe is special if it is either one-
special or two-special. Denote the set of one-special globes by Globes1[Ψ(µ)],
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the set of two-special globes by Globes2[Ψ(µ)] and the set of special globes
by Globes1,2[Ψ(µ)]. Also let Ψ1(µ), Ψ2(µ), and Ψ1,2(µ) denote the union
of the set of one-special, two-special and special globes respectively. Let
(Ψ1(µ))c, (Ψ2(µ))c, and (Ψ1,2(µ))c denote the respective complements in Rd.
Note that by Proposition 16, if X is a Poisson point process on Rd with
positive intensity and law P , then one-special globes and two-special globes
exist under X P -a.s.

Lemma 23 (Assignment function). Let d ≥ 1 and R > 0. Let Ψ = ΨR

be the selection rule from Section 6. There exists a function U = UΨ :
M × (F ∪ Rd) → [0, 1] with the following properties.

(a) Let X be a Poisson point process on Rd with positive intensity. Let
{κ(X)i}i∈N

:= Globes[Ψ(X)] ∪ [X|Ψ(X)c ], where we have ordered the set
using the radial ordering. (Recall that globes are ordered by their cen-
ters.) If {Ui}i∈N

is a sequence of i.i.d. U[0, 1] random variables that is
independent of X, then

(

X|(Ψ1(X))c , Ψ1(X), Ψ(X), {U(X, κ(X)i)}i∈N

)

d
=

(

X|(Ψ1(X))c , Ψ1(X), Ψ(X), {Ui}i∈N

)

(22)

and
(

X|(Ψ2(X))c , Ψ2(X), Ψ(X), {U(X, κ(X)i)}i∈N

)

d
=

(

X|(Ψ2(X))c , Ψ2(X), Ψ(X), {Ui}i∈N

)

. (23)

(b) The map U is isometry-invariant; that is, for all isometries θ of Rd and
for all (µ, b) ∈ M × (F ∪ Rd), we have U(µ, b) = U(θ(µ), θ(b)).

We call UΨ the assignment function for the selection rule Ψ. Thus
if X is a Poisson point process and b ∈ Globes[Ψ(X)] or if b ∈ [X|Ψ(X)c],
then the assignment function assigns a U[0, 1] random variable U(X, b) to
b. Property (a) states that the U[0, 1] random variables have a certain inde-
pendence property; the values of X on both the one-special and two-special
globes are needed to determine the values of the assignment function. The
map that we shall define in the next section to prove Theorem 1 will use U

to assign U[0, 1] random variables to the globes and the points of the ether.
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We shall see that property (a) makes proving Theorem 1 easy. Property (b)
is necessary to ensure that the map that we define is isometry-equivariant.

Let us also remark that since by property (c) in the definition of a selection
rule, Ψ(X) depends only on X|Ψ(X)c ⊂ X|(Ψ1,2(X))c , therefore the addition of
Ψ(X) in (22) and (23) is actually redundant. We now have all the tools
we need to prove Theorem 1. We defer the proof of Lemma 23 to Section
9. Much of the proof is bookkeeping, but for property (a) we shall need to
appeal to Proposition 16.

8 Proof of Theorem 1

We are now in a position to prove Theorem 1. First we give the definition of
the mapping that satisfies the conditions of Theorem 1. Let X be a Poisson
point process on Rd with intensity λ and let λ′ < λ. Recall the definition
of the splitting φfin from Section 2 (Proposition 8) and the definitions of
F coin and φind from (17) and (18) of Section 6. Let R = R(λ, λ′) > 0 be so
that the Lebesgue measure of B(0, R) is larger than the constant K(λ, λ′) of
Proposition 4. Let Ψ = ΨR be the R-selection rule from Section 6 and let
U be the assignment function from Lemma 23. Define Γ = Γ(λ,λ′) as follows.
For all µ ∈ M,

Γ(µ) :=
∑

b∈Globes[Ψ(µ)]

φfin
(b,λ,λ′)(µ|b, U(µ, b))+

∑

x∈[µ|Ψ(µ)c]

F coin
(λ,λ′)(x, U(µ, x)) . (24)

Proof of Theorem 1. From the definition of Γ it is easy to check that it is
isometry-equivariant; we need only recall that by Lemma 23, the assignment
function U is isometry invariant and that the splitting φfin and selection rule
Ψ are isometry-equivariant. Also it obvious that Γ is monotone, so it suffices
to check that Γ(X) and X − Γ(X) are Poisson point processes on Rd with
intensities λ′ and λ − λ′ respectively.

Let U be a U[0, 1] random variable independent of X and let gi : [0, 1] →
[0, 1] be the functions from Lemma 5. Let {bi}i∈Z+ = Globes[Ψ(X)], where
we have ordered the globes via the radial ordering. Similarly, let {xi}i∈Z+ =
[X|Ψ(X)c ]. Let Φ be the splitting defined in Corollary 20. Note that Φ is a
version of Γ that uses randomness from U instead of from certain points of

34



X. By property (d) of Proposition 8 we have that

Φ(X, U) =
∑

i∈Z+

1[X(bi)6=1]φ
fin
bi

(

X|bi
, U(X, gi(U))

)

+ (25)

φind(X|Ψ(X)c , g0(U))

and
X − Φ(X, U) =

∑

i∈Z+

1[X(bi)6=2]

(

X|bi
− φfin

bi

(

X|bi
, U(X, gi(U))

)

)

+

X|Ψ(X)c − φind(X|Ψ(X)c, g0(U)) . (26)

We shall show that Γ(X)
d
= Φ(X, U) and X − Γ(X)

d
= X − Φ(X, U). Set

α :=
∑

i∈Z+

φfin
bi

(X|bi
, U(X, bi)) ,

β :=
∑

i∈Z+

F coin(xi, U(X, xi)) ,

α′ :=
∑

i∈Z+

(

X|bi
− φfin

bi
(X|bi

, U(X, bi))
)

,

and
β ′ := X|Ψ(X)c −

∑

i∈Z+

F coin(xi, U(X, xi)) .

By definition,

Γ(X) = α + β and X − Γ(X) = α′ + β ′ .

By property (d) of Proposition 8,

α =
∑

i∈Z+

1[X(bi)6=1]φ
fin
bi

(X|bi
, U(X, bi))

and
α′ =

∑

i∈Z+

1[X(bi)6=2]

(

X|bi
− φfin

bi
(X|bi

, U(X, bi))
)

.

By property (a) of Lemma 23, we have that

α + β
d
=

∑

i∈Z+

1[X(bi)6=1]φ
fin
bi

(X|bi
, g2i(U)) +

∑

i∈Z+

F coin(xi, g2i+1(U))

and
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α′ + β ′ d
=

∑

i∈Z+

1[X(bi)6=2]

(

X|bi
− φfin

bi
(X|bi

, g2i(U))
)

+

X|Ψ(X)c −
∑

i∈Z+

F coin(xi, g2i+1(U)) .

Thus, from the definition of Φ in Corollary 20, it is easy to see that

α + β
d
= Φ(X, U)

and
α′ + β ′ d

= X − Φ(X, U) .

Hence by Corollary 20, we have that Γ(X) and X − Γ(X) are Poisson
point processes with intensities λ′ and λ − λ′ respectively.

9 The Assignment Function

In this section we shall prove Lemma 23. Many of the same tools will be
useful again in the proof of Theorem 2. Recall that the assignment function
contained within it the two tasks of generating and distributing uniform ran-
dom variables. First we discuss how we generate uniform random variables.

The following lemma describes explicitly how we convert the position of
a single X-point in a ball (which is a uniform random variable on the ball)
into a single uniform random variable on [0, 1]. We need to be explicit to
preserve equivariance.

Lemma 24 (Uniform random variables). For every d ≥ 1 and R > 0, define
fB̄(c,R) : B̄(c, R) → [0, 1] via

fB̄(c,R)(x) :=

(

‖x − c‖

R

)d

.

The collection of mappings
{

fB̄(c,R)

}

c∈Rd
has the following properties.

1. If V is a U[B̄(c, R)] random variable, then fB̄(c,R)(V ) is a U[0, 1] ran-
dom variable.

2. We have isometry-invariance; that is, for any isometry θ of Rd,
fB̄(c,R)(x) = fθ(B̄(c,R))(θ(x)) for all x ∈ B̄(c, R).
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Proof. Here we shall make good use of the fact that we are working with
balls. Recall that the Lebesgue measure of a d-ball of radius R is given by
C(d)Rd for some fixed constant C(d) > 0 depending only on d. Let V be a
uniform random variable on the ball B̄(c, R). Then for 0 ≤ x ≤ 1,

P
(

fB̄(c,R)(V ) ≤ x
)

= P
(

‖V − c‖ ≤ Rx
1
d

)

=
L(B̄(Rx

1
d ))

L(B̄(R))
= x.

Each globe or X-point not in a globe will be associated to a one-special
globe and to a two-special globe. It will be necessary to allow more than
one globe or X-point to be associated to each special globe. First we need
to develop some infrastructure. Recall that by Lemma 5 a single uniform
random variable can be used to generate a sequence of i.i.d. U[0, 1] random
variables.

Encoding functions. We associate to every special globe a [0, 1]-valued
sequence in the following way. Let

{

fB̄(c,R)

}

c∈Rd
and {gi}i∈N

be the collections
of functions from Lemmas 24 and 5 respectively. Let Ψ be an R-selection
rule. For each b ∈ Globes1[Ψ(µ)], let xb denote the unique µ-point in b and
for each b ∈ Globes2[Ψ(µ)], let x1

b and x2
b be the two µ-points in b, where we

take x1
b to be the one closest to the origin in a lexicographic ordering. Recall

that ⊕ denotes addition modulo one. Let h′ = h′
Ψ : M × F → [0, 1] and

h = hΨ : M × F → [0, 1]N be defined as follows:

h′
Ψ(µ, b) :=











fb(xb) if µ ∈ M, b ∈ Globes1[Ψ(µ)],

fb(x
1
b) ⊕ fb(x

2
b) if µ ∈ M, b ∈ Globes2[Ψ(µ)],

0 if µ ∈ M, b 6∈ Globes1,2[Ψ(µ)]

(27)

and
hΨ(µ, b) := {gi(h

′(µ, b))}i∈N
. (28)

We call hΨ the encoding function for the selection rule Ψ and we call h′
Ψ

the simplified encoding function for the selection rule Ψ.

Lemma 25. Let d ≥ 1 and R > 0. Let Ψ be an R-selection rule. Both
the encoding and the simplified encoding functions h, h′ satisfy the following
properties.

(a) The maps h, h′ are isometry-invariant; that is, for all isometries θ of
Rd and for all (µ, b) ∈ M × F, h(µ, b) = h(θ(µ), θ(b)) and h′(µ, b) =
h′(θ(µ), θ(b)).
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(b) Let X be a Poisson point process on Rd with positive intensity. Let
{b1

i }i∈N
:= Globes1[Ψ(X)] and {b2

i }i∈N
:= Globes2[Ψ(X)], where we have

ordered the sets of one-special and two-special globes by the radial order-
ing. If {Ui}i∈N

is a sequence of i.i.d. U[0, 1] random variables that is
independent of X, then

(

X|(Ψ1(X))c , Ψ1(X),
{

h′(X, b1
i )

}

i∈N

)

d
=

(

X|(Ψ1(X))c , Ψ1(X), {Ui}i∈N

)

and
(

X|(Ψ2(X))c , Ψ2(X),
{

h′(X, b2
i )

}

i∈N

)

d
=

(

X|(Ψ2(X))c , Ψ2(X), {Ui}i∈N

)

.

Similarly, if {U ′
i}i∈N

is a sequence of i.i.d. random variables, independent

of X, where U ′
1

d
= {Ui}i∈N

, then

(

X|(Ψ1(X))c , Ψ1(X),
{

h(X, b1
i )

}

i∈N

)

d
=

(

X|(Ψ1(X))c , Ψ1(X), {U ′
i}i∈N

)

and
(

X|(Ψ2(X))c , Ψ2(X), {h(X, bi)}i∈N

)

d
=

(

X|(Ψ2(X))c , Ψ2(X), {U ′
i}i∈N

)

.

To prove Lemma 25, we shall use the following corollary of Proposition
16:

Corollary 26. Let X be a Poisson point process on Rd with positive intensity
and let Ψ be an R-selection rule. Let {b1

i }i∈N
:= Globes1[Ψ(X)] and let

{b2
i }i∈N

:= Globes2[Ψ(X)], where we have ordered the one-special and two-
special globes using the radial ordering. Also let c1

i ∈ b1
i and c2

i ∈ b2
i be the

centers of the one-special and two-special globes. If {V 1
i }i∈N

, {V 21
i }i∈N

, and
{V 22

i }i∈N
are independent i.i.d. sequences of U[B̄(0, R)] random variables that

are independent of X, then
(

X|(Ψ1(X))c , Ψ1(X),
{

X|b1i

}

i∈N

)

d
=

(

X|(Ψ1(X))c , Ψ1(X),
{

δV 1
i +c1i

}

i∈N

)

,

(

X|(Ψ2(X))c , Ψ2(X),
{

X|b2i

}

i∈N

)

d
=

(

X|(Ψ2(X))c , Ψ2(X),
{

δV 21
i +c2i

+ δV 22
i +c2i

}

i∈N

)

,
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and
(

X|(Ψ1,2(X))c , Ψ1(X), Ψ2(X),
{

X|b1i

}

i∈N

,
{

X|b2i

}

i∈N

)

d
=

(

X|(Ψ1,2(X))c , Ψ1(X), Ψ2(X),
{

δV 1
i +c1i

}

i∈N

,
{

δV 21
i +c2i

+ δV 22
i +c2i

}

i∈N

)

.

Proof. This follows from Proposition 16 and Lemma 7.

Proof of Lemma 25. The proof of property (a) follows immediately from the
definition of an encoding function, property (b) of a selection rule, and
Lemma 24. We now focus our attention on property (b). From the defi-
nition of h and the fact that the gi satisfy the conditions of Lemma 5, it
suffices to verify the condition for the simplified encoding function h′.

Let V1
i be the unique X-point in each b1

i . From Corollary 26, we have
that {V1

i − c1
i }i∈N

is a sequence of i.i.d. U[B̄(0, R)] random variables that is
independent of (X|(Ψ1(X))c , Ψ1(X)). Similarly, let V2

i be the set of unordered
X-points of each b2

i . From Corollary 26, we have that {V2
i − c2

i }i∈N
is a

sequence of i.i.d. pairs of unordered U[(B̄(0, R))] random variables that is
independent of (X|(Ψ2(X))c , Ψ2(X)). By the definition of h′ and Lemmas 24
and 9, the result follows immediately.

We turn now to the task of distributing randomness. A natural approach
is to have each non-special globe request randomness from the closest avail-
able special globe (where distances are measured between the centers of
the globes). However, we do not know much about the process of globe-
centers. In particular, it is not immediately obvious that it has distinct
inter-point distances P -a.s. To avoid this problem, we shall make use of
some of the other properties of seeds. Recall that if x is a pre-seed, we call
A(x; R + 80, R + 90 + d) the halo. If x is a seed, then we shall also call
A(x; R + 80, R + 90 + d) the halo. We shall associate to every globe a point
in its halo in an equivariant way.

Tags. Let Ψ be a selection rule from Section 6 and let the inter-point
distances of µ ∈ M be distinct. For each globe under µ, we choose a point in
its halo in the following isometry-equivariant way. First note that the halo
contains more than three µ-points. Take the two mutually closest points
in the halo, then choose the one of this pair that is closest to the other
points in the halo. We call this point the tag of the globe. We note that
by Lemma 14, part (b), tags are well defined and exist for every globe P -a.s.
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For completeness, if the inter-point distances in the halo are not distinct, we
take the tag to be the center of the globe. Let t = tΨ : M × F → Rd ∪ {∞}
be the measurable function defined as follows:

tΨ(µ, b) :=











the tag of b if µ ∈ M, b ∈ Globes[Ψ(µ)],

x if µ ∈ M, b = {x} , x ∈ [µ|Ψ(µ)c],

∞ otherwise.

(29)

We call tΨ the tagging function for the selection rule Ψ.

Lemma 27. Let d ≥ 1 and R > 0. Let Ψ = ΨR be the selection rule from
Section 6. The tagging function t = tΨ : M×F → Rd∪{∞} has the following
properties.

1. The map t depends only on (Ψ(µ), µ
∣

∣

Ψ(µ)c); that is, for all µ, µ′ ∈ M if

(Ψ(µ), µ
∣

∣

Ψ(µ)c) = (Ψ(µ′), µ′
∣

∣

Ψ(µ′)c), then t(µ, ·) = t(µ′, ·).

2. The map t is isometry-equivariant; that is, for all isometries θ of Rd

and for all (µ, b) ∈ M × F, θ(t(µ, b)) = t(θ(µ), θ(b)). Here we take
θ(∞) = ∞.

Proof. The result follows immediately from the definition of the tagging func-
tion.

Partners and Ranks. Let Ψ be a selection rule from Section 6. We
shall now measure distances between globes, as well as distances between
globes and µ-points, via the distances between their tags. Let the inter-
point distances of µ ∈ M be distinct and also assume that Globes1[Ψ(µ)]
and Globes2[Ψ(µ)] are both non-empty. For each globe b ∈ Globes[Ψ(µ)]
we call its closest one-special globe its one-partner (if unique), and its
closest two-special globe its two-partner (if unique). Similarly, for each
x ∈ [µ|Ψ(µ)c ] we call its closest one-special globe its one-partner and its
closest two-special globe its two-partner . Suppose that a globe b has a
special globe B ∈ Globes1,2[Ψ(µ)] as a partner; then B assigns the number
2n to b if there are exactly n globes with B as partner that are closer to B
than b. We call the number that b is assigned by its one-partner its one-

rank and the number that b is assigned by its two-partner its two-rank .
Similarly, a special globe B ∈ Globes1,2[Ψ(µ)] assigns the number 2n + 1 to
x if it is a partner of x ∈ [µ|Ψ(µ)c ] and there are exactly n partners in [µ]
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that are closer to B than x; we also call the number that x is assigned its
one-rank or two-rank depending on whether it is assigned by its one- or
two-partner. Let M′ be the set of point measures of M that have both one-
and two-special globes and have distinct inter-point distances. We define
p = pΨ : M × (F ∪ Rd) → F × F as follows:

pΨ(µ, b) := (one-partner of b, two-partner of b)

if µ ∈ M′ and b ∈ Globes[Ψ(µ)] ∪ [µ|Ψ(µ)c ] and pΨ(µ, b) := (b, b) otherwise.
We also define r = rΨ : M × (F ∪ Rd) → N × N as follows:

rΨ(µ, b) := (one-rank of b, two-rank of b)

if µ ∈ M′ and b ∈ Globes[Ψ(µ)] ∪ [µ|Ψ(µ)c ] and rΨ(µ, b) := (0, 0) otherwise.
We call pΨ the partner function for the selection rule Ψ and we call rΨ

the rank function for Ψ. Also let

χ(µ) := (Ψ(µ), Ψ1(µ), Ψ2(µ), µ|Ψ(µ)c)

for all µ ∈ M.

Lemma 28. Let d ≥ 1 and R > 0. Let Ψ be the selection rule from Section
6. The partner and rank functions p = pΨ and r = rΨ have the following
properties.

1. The maps p, r depend only on χ(µ); that is, for all µ, µ′ ∈ M if χ(µ) =
χ(µ′), then p(µ, ·) = p(µ′, ·) and r(µ, ·) = r(µ′, ·)

2. The map p is isometry-equivariant; that is, for all isometries θ of Rd

and for all (µ, b) ∈ M × F, θ(p(µ, b)) = p(θ(µ), θ(b)).

3. The map r is isometry-invariant; that is, for all isometries θ of Rd and
for all (µ, b) ∈ M × F, r(µ, b) = r(θ(µ), θ(b)).

Proof. The result follows immediately from the definitions of the partner and
rank functions and Lemma 27.

Assignment functions. We shall now combine the encoding, partner and
rank functions to obtain an assignment function. Let Ψ be a selection rule
from Section 6. Define U = UΨ : M × (F ∪ Rd) → [0, 1] as follows. Let
h = hΨ, p = pΨ, and r = rΨ be the encoding, partner and rank functions.
Recall that h : M × F → [0, 1]N. For all (µ, b) ∈ M × (F ∪ Rd), let

U(µ, b) := h(µ, p(µ, b)1)r(µ,b)1 ⊕ h(µ, p(µ, b)2)r(µ,b)2 . (30)
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Proof of Lemma 23. The isometry-invariance of U follows immediately from
the definition of U and Lemmas 25 and 28. Let X be a Poisson point process
in Rd. Let {κi}i∈N

:= Globes[Ψ(X)] ∪ [X|Ψ(X)c ], {b1
i }i∈N

:= Globes1[Ψ(X)]
and let {b2

i }i∈N
:= Globes2[Ψ(X)], where we have ordered the sets using the

radial ordering. Let {Ui}i∈N
be a sequence of i.i.d. U[0, 1] random variables

independent of X. Let {U ′
i}i∈N

be an i.i.d. sequence (independent of X),
where U ′

1 is a sequence of i.i.d. U[0, 1] random variables. From Lemma 28,
p(X, ·) and r(X, ·) depend only on χ(X). It is clear that both χ(X) and
h(X, b2

i ) depend only on (X|(Ψ1(X))c , Ψ1(X)), so that by Lemma 25
(

X|(Ψ1(X))c ,Ψ1(X), χ(X),
{

h(X, b1
i )

}

i∈N
,
{

h(X, b2
i )

}

i∈N

)

d
=

(

X|(Ψ1(X))c , Ψ1(X), χ(X), {U ′
i}i∈N

,
{

h(X, b2
i )

}

i∈N

)

. (31)

From the definition of the assignment function, it is clear that U(X, ·) de-
pends only on

(

χ(X),
{

h(X, b1
i )

}

i∈N
,
{

h(X, b2
i )

}

i∈N

)

.

It is also easy to see that χ(X) depends only on (X|(Ψ1,2(X))c , Ψ1(X), Ψ2(X)).
Thus from the definition of the assignment function, (31) and Lemma 9, it
follows that

(

X|(Ψ1(X))c , Ψ1(X), {U(X, κi)}i∈N

)

d
=

(

X|(Ψ1(X))c , Ψ1(X), {Ui}i∈N

)

.

Similarly, we have that
(

X|(Ψ2(X))c ,Ψ2(X), χ(X),
{

h(X, b1
i )

}

i∈N
,
{

h(X, b2
i )

}

i∈N

)

d
=

(

X|(Ψ2(X))c , Ψ2(X), χ(X),
{

h(X, b1
i )

}

i∈N
, {U ′

i}i∈N

)

, (32)

from which it follows that
(

X|(Ψ2(X))c , Ψ2(X), {U(X, κi)}i∈N

)

d
=

(

X|(Ψ2(X))c , Ψ2(X), {Ui}i∈N

)

.

10 Proof of Theorem 2

In this section, we shall show how the tools used to prove Theorem 1 can
be adapted to prove Theorem 2. As a first step we prove a translation-
equivariant version of Theorem 2. That is, given λ, λ′, we define a translation-
equivariant map Φ′ : M → M such that if X is a Poisson process on Rd of
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intensity λ, then Φ′(X) is a Poisson process of intensity λ′. By modifying the
map Φ′ we shall obtain a map Υ that is isometry-equivariant and satisfies
the conditions of Theorem 2. We need some preliminary definitions before
we can give the definition of Φ′.

Voronoi Cells. The Voronoi tessellation of a simple point measure µ ∈ M

is a partition of Rd defined in the following way. The Voronoi cell of a
point x ∈ [µ] is the set of all points y ∈ Rd such that ‖x−y‖ < ‖z−y‖ for all
z ∈ [µ] \ {x}. The unclaimed points are the points that do not belong to a
cell. We define the Voronoi tessellation V(µ) to be the set of all Voronoi
cells along with the set of unclaimed points. Note that if µ is locally finite
and not identically zero, then the set of unclaimed points has zero Lebesgue
measure. Note that the Voronoi tessellation is clearly isometry-equivariant;
that is, for any isometry θ of Rd we have V(θµ) = θV(µ) := {θυ : υ ∈ V(µ)}.

For each A ∈ B with positive finite Lebesgue measure, let cA be its center
of mass. Let Ψ be a selection rule and define c = cΨ : M → M via

c(µ) :=
∑

b∈Globes[Ψ(µ)]

δcb
. (33)

Note that c is also isometry-equivariant. The map Φ′ will be defined by
placing independent Poisson point processes in each Voronoi cell of V(c(µ)).
Let θy be the isometry of Rd such that for all x ∈ Rd, we have θy(x) = x + y.
We define Φ′ in the following way. Let Ψ be the R-selection rule from Section
6, where R will be chosen later. Let φP be the collection of mappings from
Lemma 6. Let U be the assignment function from Lemma 23. The map
Φ′ = Φ′

λ′ is defined via

Φ′(µ) :=
∑

υ∈V(c(µ))

∑

b∈Globes[Ψ(µ)]

1[b⊂v]θcυ

(

φP
(θ−1

cυ (υ),λ′)
(U(µ, b))

)

. (34)

Proposition 29. The map Φ′ has the following properties.

(a) The map Φ′ is translation-equivariant.

(b) If X and Y are Poisson processes on Rd with intensities λ, λ′ > 0, then

Φ′(X)
d
= Y .

Proof. Part (a) follows from the fact that the assignment function is isometry-
invariant and that the selection rule, Voronoi tessellation and the map c are
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all isometry-equivariant. From the definition of Φ′, one can verify that it is
translation-equivariant since any two translations of Rd commute with each
other. However, since translations and reflections do not necessarily com-
mute, we have only translation-equivariance. Part (b) follows from Lemma
6 and Lemma 23 once we note that the Voronoi tessellation and the centers
of the globes and Voronoi cells depend only on Ψ(X).

The following example elaborates on the difficulty of defining an isometry-
equivariant version of Φ′.

Example 3. Let λ > 0. Let B∗ ⊂ B be the set of Borel sets with positive finite
Lebesgue measure. There does not exist a family of measurable functions φp

such that for each A ∈ B∗, φp
A : [0, 1] → M has the following properties.

1. If U is a U[0, 1] variable, then φp
A(U) is Poisson point process on A

with intensity λ′.

2. The map φp is isometry-equivariant; that is, for all isometries θ of Rd,
φp

θA(U) = θφp
A(U).

Proof. Towards a contradiction, let φp satisfy the above properties. For
each x ∈ Rd, let xi be the ith coordinate. Consider A := B(0, 1), the unit
ball centered at the origin, and let A′ := {x ∈ A : x1 > 0}. Let θ be the
reflection of the first coordinate; that is, if y = (y1, . . . , yd) for some yi ∈ R,
then θ(y) = (−y1, y2, . . . , yd). Let U be a U[0, 1] random variable. The
event E := {φp

A(U)(A) = φp
A(U)(A′) = 1} occurs with non-zero probability.

However, θ(A) = A, so that whenever E occurs, φp
θA(U) 6= θφp

A(U).

Note that in the proof of Example 3, the counterexample used a set A that
is invariant under rotations and reflections. One would guess that the Voronoi
cells of a random process such as the centers of the special globes should lack
such symmetries. However, rather than dealing with the symmetries of the
Voronoi cells, we proceed as follows.

Let X be a Poisson process on Rd with positive intensity and let Ψ be
a selection rule from Section 6. Let b ∈ Globes[Ψ(X)] and for simplicity
assume that the center is at the origin. From the definition of a globe, there
will always be at least d points in the halo of a globe. We shall choose d
points from the halo and use them to associate an isometry to the globe.
Given d points {x1, . . . , xd} in the halo of b, we shall define an isometry θ
with the following properties.
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1. We have θ(0) = 0 ∈ Rd.

2. For all i, j such that 1 ≤ i < j ≤ d, we have θ(xi)j = 0 ∈ R; that is,
the jth coordinate of θ(xi) ∈ Rd is zero for j > i.

3. For all i such that 1 ≤ i ≤ d, we have θ(xi)i > 0.

Selecting d points from the halo of a globe is an easy extension of the idea
of a tag of a globe. Also to prove that such an isometry exists and is unique,
we appeal to the tools of linear algebra, in particular the QR factorization
lemma.

Notations and Conventions. To use the tools of linear algebra, it will be
convenient to identify elements of Rd with column vectors; that is, Rd = Rd×1.
Given an isometry θ of Rd and a matrix A ∈ Rd×d, we let θ(A) ∈ Rd×d be the
matrix obtained by applying θ to each of the columns of A. We also denote
the identity matrix by I ∈ Rd×d.

d-Tags. Let Ψ be a selection rule from Section 6 and let the inter-point
distances of µ ∈ M be distinct. The d-tag of a globe b ∈ Globes[Ψ(µ)] is
a matrix A ∈ Rd×d defined inductively as follows. The first column of the
matrix is the tag of b. Given that the (i − 1)th column is already defined,
the ith column is the µ-point in the halo of b that is closest to the (i − 1)th

column and is not equal to any of the first i− 1 columns. For completeness,
if the inter-point distances in the halo are not distinct, we take the d-tag to
be the matrix in Rd×d where each column vector is the center of the globe.
Let t̄ = t̄Ψ : M × F → Rd×d ∪ {∞} be the measurable function defined as
follows:

t̄Ψ(µ, b) :=

{

the d-tag of b if µ ∈ M and b ∈ Globes[Ψ(µ)],

∞ otherwise.
(35)

We call t̄Ψ the d-tagging function for the selection rule Ψ.

Lemma 30. Let d ≥ 1 and R > 0. Let Ψ = ΨR be the selection rule from
Section 6. The d-tagging function t̄ = t̄Ψ : M × F → Rd×d ∪ {∞} has the
following properties.

1. The map t̄ depends only on (Ψ(µ), µ
∣

∣

Ψ(µ)c); that is, for all µ, µ′ ∈ M, if

(Ψ(µ), µ
∣

∣

Ψ(µ)c) = (Ψ(µ′), µ′
∣

∣

Ψ(µ′)c), then t̄(µ, ·) = t̄(µ′, ·).
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2. The map t̄ is isometry-equivariant; that is, for all isometries θ of Rd

and for all (µ, b) ∈ M × F, we have θ(t̄(µ, b)) = t̄(θ(µ), θ(b)). We take
θ(∞) = ∞.

Proof. The result follows immediately from the definition of the d-tagging
function.

We note that the d-tag of a globe is almost always a non-singular matrix
by Lemma 14 (c). The following lemma allows us to associate an isometry
to each globe and its d-tag. Recall that every isometry θ of Rd that fixes the
origin can be identified with an unique orthogonal matrix Q ∈ Rd×d; that
is, there is an unique matrix Q such that QQT = QT Q = I ∈ Rd×d and
Qx = θ(x) for all x ∈ Rd = Rd×1. For background, see [20, Ch. 1].

Lemma 31 (QR factorization). For all d ≥ 1, if A ∈ Rd×d is a square matrix,
then there exists an orthogonal matrix Q ∈ Rd×d and an upper triangular
matrix ∆ ∈ Rd×d such that A = Q∆. Furthermore, if A is non-singular,
then the factorization is unique if we require the diagonal entries of ∆ to be
positive.

For a proof, see, for example, [9, 2.6].

Upper triangular matrices and fixing isometries. Let Ψ be a selec-
tion rule from Section 6 and let b ∈ Globes[Ψ(µ)]. The upper triangular

matrix for b is the matrix ∆ ∈ Rd×d defined as follows. Let cb be the center
of the globe b. Let A′ ∈ Rd×d be the d-tag for the globe b. Let A := A′− cbI.
If A is singular, then we take ∆ = 0 ∈ Rd×d. Otherwise, by Lemma 31,
there exists a unique factorization such that A = Q∆, where ∆ ∈ Rd×d is
an orthogonal matrix and ∆ ∈ Rd×d is an upper triangular matrix such that
all its diagonal entries are positive. When A is non-singular, we say that the
unique isometry σ such that σ(cb) = 0 ∈ Rd and σ(A′) = ∆ is the fixing

isometry for the globe b.
Let ∆ = ∆Ψ : M × F → Rd×d be the measurable function defined as

follows:
∆Ψ(µ, b) := the upper triangular matrix for b

if µ ∈ M and b ∈ Globes[Ψ(µ)], while ∆Ψ(µ, b) := I ∈ Rd×d otherwise. Let
0 ∈ (Rd)R

d

be the function that sends every element of Rd to 0 ∈ Rd. The
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fixing isometry function σ = σΨ : M×F → (Rd)R
d

for the selection rule
Ψ is defined as follows:

σΨ(µ, b) := the fixing isometry for the globe b

if µ ∈ M, b ∈ Globes[Ψ(µ)], and the d-tag of b is non-singular, while
σΨ(µ, b) := 0 ∈ (Rd)R

d

otherwise.

Lemma 32. Let d ≥ 1 and R > 0. Let Ψ = ΨR be the selection rule from
Section 6. The map ∆ = ∆Ψ : M × F → Rd×d and the fixing isometry
function σ = σΨ : M × F → (Rd)Rd

have the following properties.

1. The maps ∆ and σ depend only on (Ψ(µ), µ
∣

∣

Ψ(µ)c); that is, for all

µ, µ′ ∈ M if (Ψ(µ), µ
∣

∣

Ψ(µ)c) = (Ψ(µ′), µ′
∣

∣

Ψ(µ′)c), then ∆(µ, ·) = ∆(µ′, ·)

and σ(µ, ·) = σ(µ′, ·).

2. The map ∆ is isometry-invariant; that is, for all isometries θ of Rd

and for all (µ, b) ∈ M × F, we have ∆(µ, b) = ∆(θ(µ), θ(b)).

Proof. The first property follows immediately from the definitions of the
maps and Lemma 30. We prove the second property in the following way.
Let θ be an isometry of Rd. Let A′ ∈ Rd×d be a non-singular matrix, let
a′ ∈ Rd, and set A := A′ − a′I, where I is the identity matrix. Let A = Q∆
be the unique QR factorization of A, where all the diagonal entries of ∆ are
positive. From the definition of the upper triangular matrix for a globe, it
suffices to show that for some orthogonal matrix Q′′, we have

θ(A′) − θ(a′)I = Q′′∆ .

Note that there exists an orthogonal matrix Q′ and c ∈ Rd such that for all
x ∈ Rd = Rd×1, we have θ(x) = Q′x + c. Observe that

θ(A′) − θ(a′)I = Q′A′ + cI − (Q′a′ + cI)

= Q′(A′ − a′I)

= Q′A

= (Q′Q)∆ .

We are now ready to give the definition of the mapping that satisfies the
conditions of Theorem 2. Let X and Y be Poisson processes on Rd with
positive intensities λ, λ′ > 0. Set R = 1 and let Ψ be the R-selection rule
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from Section 6 with R = 1. Let σ : M × F → (Rd)R
d

be the fixing isometry
function for Ψ, let φP be a collection of functions from Lemma 6, and let U

be the assignment function from Lemma 23. Define Υ = Υλ′ : M → M as

Υ(µ) :=
∑

υ∈V(c(µ))

∑

b∈Globes[Ψ(µ)]

1[b⊂v]1[σ(µ,b)6=0]σ(µ, b)−1
(

φP
(σ(µ,b)(υ),λ′)(U(µ, b))

)

(36)
for all µ ∈ M.

Proof of Theorem 2. From the definition of Υ it is almost immediate that it
is isometry-equivariant. It suffices to check the following claim. Let υ ∈ B,
let b ∈ Globes[Ψ(µ)], and let θ be any isometry of Rd. We claim that for all
µ ∈ M,

σ(θµ, θb)−1
(

φP
σ(θµ,θb)(θυ) (U [θµ, θb])

)

= θ
(

σ(µ, b)−1
(

φP
σ(µ,b)(υ)) (U [µ, b])

)

)

.

(37)
To check (37), observe that by Lemma 32 and the definition of the fixing
isometry function,

σ(θµ, θb) = σ(µ, b) ◦ θ−1 .

Hence, σ(θµ, θb)−1 = θ ◦ σ(µ, b)−1 and σ(θµ, θb)(θυ) = σ(µ, b)(υ). In addi-
tion, by Lemma 23 (part (b)), U(µ, b) = U(θµ, θb), whence

φP
σ(θµ,θb)(θυ) (U(θµ, θb)) = φP

σ(µ,b)(υ) (U(µ, b)) .

Thus, (37) holds.
Let X and Y be Poisson point processes on Rd with intensities λ, λ′ > 0.

Again it follows from Lemma 6 and Lemma 23 that Υ(X)
d
= Y . We need

only note the following: the Voronoi tessellation and the centers of the globes
and Voronoi cells depend only on Ψ(X) (as in the case of Φ′ from Proposition
29) and from Lemma 32, the fixing isometry function σ also depends only
on (Ψ(X), X|Ψ(X)c).

11 Proof of Theorem 4

In this section, we shall prove Theorem 4 by showing that the map Γ defined
in (24) and used to prove Theorem 1 and the map Υ defined in (36) and used
to prove Theorem 2 are both strongly finitary. We shall prove the following
stronger result from which Theorem 4 follows immediately.
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Theorem 33. Let Γ and Υ be the maps defined in (24) and (36) respectively.
There exists a map T : M → N∪{∞} such that if X is a Poisson point process
on Rd with positive intensity, then ET (X) is finite and for all µ, µ′ ∈ M such
that T (µ), T (µ′) < ∞ and µ|B(0,T ) = µ′|B(0,T ), we have

Γ(µ)|B(0,1) = Γ(µ′)|B(0,1) and Υ(µ)|B(0,1) = Υ(µ′)|B(0,1) .

Let P be the law of X. Since ET (X) < ∞ implies that T (X) is finite
P -a.s., Theorem 33 implies that Γ and Υ are both strongly finitary with
respect to P .

We shall require the following additional property that the selection rules
defined in Section 6 satisfy.

Lemma 34. Let ΨR be a selection rule from Section 6. For any z ∈ Rd

any µ, µ′ ∈ M, if B̄(z, R) is a globe under µ, then whenever µ|B(z,R+120+d) =
µ′|B(z,R+120+d), we have that B̄(z, R) is also a globe under µ′.

Lemma 34 is a localized version of property (c) in the definition of a
selection rule. We omit the proof of Lemma 34, which uses the definition of
pre-seeds and seeds and is similar to that of Lemma 22.

Proof of Theorem 33. Let Ψ = ΨR be the R-selection rule from Section 6
that is used to define the map Γ = Γ(λ,λ′). Recall that we use the R-selection
rule with R = 1 to define the map Υ. We now work towards a definition of
T . Fix r := 100(R+101+d). Let {Ci}i∈Zd be an indexed partition of Rd into
equal-sized cubes of side length r such that Ci is centered at ir. For all i ∈ Zd,
let ci ⊂ Ci be the ball of radius 1 concentric with the cube Ci and let Ei ∈ M
be the set of measures such that ci contains a seed. Because the radius of ci

is 1, it never contains more than one seed. Let X be a Poisson point process
on Rd with positive intensity and law P . It follows from the definition of a
seed that {1X∈Ei

}i∈Zd is a collection of i.i.d. random variables with positive
expectation. For each i ∈ Zd, let E1

i ⊂ Ei be the set of measures where the
globe corresponding to the seed in ci is one-special and similarly let E2

i ⊂ Ei

be the set of measures where the globe corresponding to the seed in ci is
two-special. By Proposition 16, it follows that {1X∈E1

i
}i∈Zd and {1X∈E2

i
}i∈Zd

are collections of i.i.d. random variables with positive expectation. Let

T 1
1 (µ) := inf

{

n ∈ Z+ : µ ∈ E1
(n,0,...,0) and for some 0 < k1 < k2 < n,

we have µ ∈ E1
(kj ,0,...,0) for j = 1, 2

}

.
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Also define

T 2
1 (µ) := inf

{

n ∈ Z+ : µ ∈ E2
(n,0,...,0) and for some 0 < k1 < k2 < n,

we have µ ∈ E2
(kj ,0,...,0) for j = 1, 2

}

.

Similarly, define T 1
i and T 2

i for all 2 ≤ i ≤ d by using coordinate i. Clearly,
for all 1 ≤ i ≤ d, both T 1

i (X) and T 2
i (X) have finite mean. We set

T := 8
d

∑

j=1

r(T 1
i + T 2

i ) .

We now show that Γ satisfies the required property. Let MT ⊂ M be the
set of point measures such that µ ∈ MT iff T (µ) < ∞. Observe that since Γ
is monotone, to determine Γ(µ)|B(0,1) it suffices to determine which points of
[µ]∩B(0, 1) will be in [Γ(µ)]∩B(0, 1). If x ∈ [µ] does not belong to a globe,
then whether or not it is deleted depends on the value of U(µ, x). Recall
that U is the assignment function for Ψ. If x ∈ [µ] ∩ B(0, 1) does belong to
a globe, then whether or not it is deleted depends on the globe b for which
x ∈ b, on U(µ, b), and on the splitting φfin

b (µ|b, U(µ, b)). Let c be defined
as in (33), the point process of the centers of the globes. Thus it suffices to
show that for all µ, µ′ ∈ MT such that µ|B(0,T (µ)) = µ′|B(0,T (µ)), we have

(a) Ψ(µ) ∩ B(0, 1) = Ψ(µ′) ∩ B(0, 1) and c
(

Ψ(µ)
)
∣

∣

B(0,1)
= c

(

Ψ(µ′)
)
∣

∣

B(0,1)
,

(b) U(µ, x) = U(µ′, x) for all x ∈ B(0, 1), and

(c) U(µ, B̄(y, R)) = U(µ′, B̄(y, R)) for all y ∈ B(0, 1).

Write T = T (µ). Property (a) follows from µ|B(0,T ) = µ′|B(0,T ) and
Lemma 34. Property (b) follows from the following observations. If B̄(z, R)
is a partner of some x ∈ B(0, 1), then ‖x − z‖ ≤ r max(T 1

1 , T 2
1 ). Thus

B(z, R + 120 + d) ⊂ B(0, T ). In addition, if y ∈ [µ] shares a partner with
x and has lower one- or two-rank than x, then ‖x − y‖ ≤ 2r max(T 1

1 , T 2
1 ),

so that y ∈ B(0, T ). Also note that the tag of a globe B(z, R) is contained
in B(z, R + 120 + d). Hence by Lemma 34, the partners and ranks of x are
determined on B(0, T ). Thus

p(µ, x) = p(µ′, x) and r(µ, x) = r(µ′, x)
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for all x ∈ B(0, 1) and all µ, µ′ ∈ MT such that µ|B(0,T ) = µ′|B(0,T ), where p, r
are the partner and rank functions of Ψ. From the definition of U , property
(b) follows.

Similarly, if y ∈ B(0, 1), b = B̄(y, R) is a globe, and B̄(z, R) is a partner
of b, then B(z, R+120+d) ⊂ B(0, T ). In addition, if B̄(y, R) shares a partner
with b and has a lower rank than b, then B(y, R + 120 + d) ⊂ B(0, T ). Thus
property (c) also holds.

The proof that Υ has the required property is similar. Recall that Υ is
defined by placing Poisson point processes inside each member of V(c) using
the assignment function U . Recall that V(µ) is the Voronoi tessellation
of the point process µ and each Voronoi cell receives the U[0, 1] variable
assigned to the globe that is contained in the Voronoi cell. For all x ∈ Rd, let
v(x, µ) be the member of V(c(µ)) to which x belongs. From the definition
of T and Lemma 34, it follows that for all x ∈ B(0, 1) and all µ, µ′ ∈ MT

such that µ|B(0,T (µ)) = µ′|B(0,T (µ)), we have v(x, µ) = v(x, µ′). Moreover,
it is not difficult to verify that for each x ∈ B(0, 1), if b ⊂ v(x, µ) is a
globe, then its partners, rank and assignment function are also determined
on B(0, T (µ)).

12 Open Problems

Question 1, in the introduction, asked whether a homogeneous Poisson point
process X on Rd can be deterministically “thickened” via a factor—that is,
whether there exists a deterministic isometry-equivariant map φ such that
φ(X) is a homogeneous Poisson process of higher intensity that contains all
the original points of X.

We also do not know the answer to the following question, where we drop
the requirement of equivariance.

Question 2. Let d ≥ 1 and let λ′ > λ > 0. Does there exist a deterministic
map φ such that if X is a homogeneous Poisson point process, then φ(X) is
a homogeneous Poisson point process on Rd with intensity λ′, and such that
all the points of X are points of φ(X)?

We can also ask similar questions in the discrete setting of Bernoulli
processes. We do not know the answer to following simple question.

Question 3. Let X = {Xi}i∈Z
be a sequence of i.i.d. {0, 1}-valued random

variables with E(X0) = 1
4
. Does there exist a deterministic map f such
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that {f(X)i}i∈Z
is a sequence of i.i.d. {0, 1}-valued random variables with

E(f(X)0) = 1
2

and f(X)i ≥ Xi for all i ∈ Z?

Note that there does not exist a translation-equivariant map φ, a fac-
tor, that satisfies the condition of Question 3; if φ is a factor, then by the
Kolmogorov-Sinai theorem, the entropy of φ(X) can not be greater than
the entropy of X. See [19, Chapter 5] for more details. More generally, if
B(p) and B(q) are Bernoulli shifts on {0, 1, . . . , d − 1}, where the entropy
of p is less than the entropy of q, one can ask whether there exists a de-
terministic map φ from B(p) to B(q) such that we have φ(x)i ≥ xi for all
x ∈ {0, 1, . . . , d − 1} and all i ∈ Z. Also see [2] for more open problems.

Remark. Ori Gurel-Gurevich and Ron Peled have informed us that they
have answered Questions 1–3 (with respective answers no, yes, and yes) in a
manuscript entitled “Poisson Thickening”.
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[29] Á. Timár. Tree and grid factors for general point processes. Electron.
Comm. Probab., 9:53–59 (electronic), 2004.

54



Alexander E. Holroyd

Department of Mathematics, University of British Columbia,

121-1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada

and

Microsoft Research, 1 Microsoft Way, Redmond, WA 98052, USA.

holroyd@math.ubc.ca www.math.ubc.ca/~holroyd

Terry Soo

Department of Mathematics, University of British Columbia

121-1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada.

tsoo@math.ubc.ca www.math.ubc.ca/~tsoo

Russell Lyons

Department of Mathematics, Indiana University,

Bloomington, IN 47405-5701, USA.

rdlyons@indiana.edu http://mypage.iu.edu/~rdlyons

55

holroyd@math.ubc.ca
www.math.ubc.ca/~holroyd
tsoo@math.ubc.ca
www.math.ubc.ca/~tsoo
rdlyons@indiana.edu
http://mypage.iu.edu/~rdlyons

	Introduction
	Some remarks about the proofs
	Proof of Theorem 3
	Proof of Proposition 8
	Selection Rules
	Construction of Selection Rules
	Encoding and Distributing Randomness
	Proof of Theorem 1
	The Assignment Function
	Proof of Theorem 2
	Proof of Theorem 4
	Open Problems

