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Abstract

A sorting network is a shortest path from 12 · · · n to n · · · 21 in

the Cayley graph of Sn generated by nearest-neighbor swaps. For

m ≤ n, consider the random m-particle sorting network obtained by

choosing an n-particle sorting network uniformly at random and then

observing only the relative order of m particles chosen uniformly at

random. We prove that the expected number of swaps in location j

in the subnetwork does not depend on n, and we provide a formula

for it. Our proof is probabilistic, and involves a Polya urn with non-

integer numbers of balls. From the case m = 4 we obtain a proof of a

conjecture of Warrington. Our result is consistent with a conjectural

limiting law of the subnetwork as n → ∞ implied by the great circle

conjecture Angel, Holroyd, Romik and Virág.

1 Introduction

Let Sn be the symmetric group of all permutations σ = (σ(1), . . . , σ(n)) on
{1, . . . , n}, with composition given by (στ)(i) := σ(τ(i)). For 1 ≤ s ≤ n − 1
denote the adjacent transposition or swap at location s by τs := ( s s+1 ) =
(1, 2, . . . , s + 1, s, . . . , n) ∈ Sn. Denote the identity id := (1, 2, . . . , n) and
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Figure 1: An illustration of the 5-particle sorting network ω =
(2, 1, 3, 4, 2, 3, 4, 2, 1, 2), together with the 3-particle subnetwork ω|A =
(2, 1, 2) induced by the subset of particles A = {1, 2, 4}.

the reverse permutation ρ := (n, . . . , 2, 1). An n-particle sorting network

is a sequence ω = (s1, . . . , sN), where N :=
(

n

2

)
, such that

τs1
τs2

· · · τsN
= ρ.

For 1 ≤ t ≤ N we refer to st = st(ω) as the tth swap location, and we call
the permutation σt = σt(ω) := τs1

· · · τst
the configuration at time t. We

call σ−1
t (i) the location of particle i at time t.

Given an n-particle sorting network ω and a subset A of {1, . . . , n} of size
m, the induced subnetwork ω|A is the m-particle sorting network obtained
by restricting attention to the particles in A. More precisely, if the elements
of A are a1 < a2 < · · · < am, delete from each configuration σt of ω all
elements not in A, and replace ai with i, to give a permutation in Sm, then
remove all duplicates from the resulting sequence of permutations; the result
is the sequence of configurations of ω|A. See Figure 1.

The uniform sorting network ωn is a random sorting network chosen
according to the uniform measure on the set all n-particle sorting networks.
For m ≤ n, the random m-out-of-n subnetwork ωn

m is the random m-
particle sorting network (ωn)|A, where ωn is a uniform n-particle sorting
network, and A is an independent uniformly random m-element subset of
{1, . . . , n}.

Uniform sorting networks were investigated in [2], leading to many strik-
ing results and conjectures. (A different probability measure on sorting net-
works was considered in [3].) Our main result is the following surprising
fact about random subnetworks. We denote the falling factorial (a)r :=
a(a − 1) · · · (a − r + 1) (so r! = (r)r).
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Theorem 1. Let m ≤ n. In the random m-out-of-n subnetwork, the expected
number of swaps in location j does not depend on n, and equals

E#
{
t : st(ω

n
m) = j

}
=

(j − 1
2
)j−1(m − j − 1

2
)m−j−1

(j − 1)!(m − j − 1)!
, 1 ≤ j ≤ m − 1.

Given only that the left side does not depend on n, the formula on the
right side may be recovered by reducing to the case n = m, which gives ωn

m =
ωm, and using known results on the uniform sorting network (specifically,
Proposition 5 below).

It is natural to seek generalizations of Theorem 1. For example one might
ask whether the law of #

{
t : st(ω

n
m) = j

}
is the same for each n ≥ m. This

is true for m = 3 (indeed the law of ωn
3 is the same for all n ≥ 3), but fails

for m = 4 with n = 4, 5.
From the case m = 4 of Theorem 1 we deduce the following result, which

was conjectured by Warrington [8]. (We abbreviate (s1, . . . , sN) to s1 · · · sN ).

Corollary 2. For all n ≥ 4, the probability that the random 4-out-of-n sub-
network lies in {123212, 321232, 212321, 232123} is 1/4.

The present work was triggered by Warrington’s conjecture. Corollary 2
has a natural interpretation in terms of geometric sorting networks, which we
define next. Consider a set of n points in R

2 with no three collinear and no
two in the same vertical line. The associated geometric sorting network

is defined as follows. Label the points x1, . . . , xn in order of their projections
onto the horizontal axis. For all but finitely many angles θ, the projections
onto the line through 0 in direction θ fall in an order xσ(1), . . . , xσ(n) corre-
sponding to a permutation σ = σθ of the original order, and as θ is increased
from 0 to π, these permutations form the configurations of a sorting network.

The four networks listed in Corollary 2 are precisely those geometric
networks in which one point is in the convex hull of the other three. It
turns out that all n-particle sorting networks are geometric for n ≤ 4, but
not for n ≥ 5, as proved in [6]. In fact it is proved in [1] that the uniform
sorting network is non-geometric with probability tending to 1 as n → ∞;
on the other hand, a principal conjecture of [2] is that in a certain sense the
uniform sorting network is approximately geometric.

The conjectures in [2] lead to the following precise prediction for the
limiting law of the random m-out-of-n subnetwork as n → ∞. We will prove
that Theorem 1 is consistent with this conjecture.
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Conjecture 3. Let X1, . . . , Xm be independent identically distributed random
points in R

2 chosen according to the Archimedes density

1

2π
√

1 − x2 − y2

on the disc x2+y2 < 1, and let ω̂m be the associated random geometric sorting
network. The random m-out-of-n subnetwork ωn

m satisfies the convergence in
distribution

ωn
m

D→ ω̂m as n → ∞.

Conjecture 3 is implied by [2, Conjecture 3] (and this is implicit in the
discussion at the end of [2, Section 1] and [2, proof of Theorem 5]). The
conjecture implies that any statistic of the law of ωn

m should converge to the
appropriate limit; we establish that this indeed holds for the expected value
in Theorem 1.

Proposition 4. Let ω̂m be the random geometric sorting network of Con-
jecture 3. The expected number of swaps in ω̂m at location j equals the right
side in Theorem 1.

2 Proof of main result

We will use the following key properties of uniform sorting networks.

Proposition 5 ([2]). Consider a uniform n-particle sorting network, and
write N =

(
n

2

)
.

(i) The random sequence of swap locations is stationary. That is,
(s1, . . . , sN−1) and (s2, . . . , sN) are equal in law.

(ii) The probability mass function pn of the first swap location is given by

pn(k) = P(s1 = k) =
1

N
· (k − 1

2
)k−1(n − k − 1

2
)n−k−1

(k − 1)!(n − k − 1)!
, 1 ≤ k ≤ n− 1.

Proposition 5 is proved in [2, Theorem 1(i) and Proposition 9]. For the
reader’s convenience we also summarize the arguments here. Part (i) follows
immediately because (s1, . . . , sN) 7→ (s2, . . . , sN , n − s1) is a permutation of
the set of all n-particle sorting networks. Part (ii) requires more technology.
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By a bijection of Edelman and Greene [4], the location of the first swap
is equal in law to the position along the diagonal of the largest entry in a
uniformly random standard Young tableau of shape (n − 1, . . . , 2, 1). The
mass function of the latter may be computed by using the hook formula
of Frame, Robinson and Thrall [5] to enumerate Young tableaux with and
without a given cell on the diagonal.

The stationarity of the uniform sorting network will play a key role in
our proof of Theorem 1. We remark that the random m-out-of-n subnetwork
ωn

m is not in general stationary; even ω5
4 is a counterexample, as noted in [8].

Stationarity apparently also fails for the random geometric sorting network
ω̂m of Conjecture 3 (according to simulations), and therefore it presumably
fails to hold asymptotically for ωn

m as n → ∞.
Our proof of Theorem 1 will proceed by relating the mass function pn to

a Polya urn process, which is defined as follows. An urn contains black and
white balls in some numbers (which for our purposes need not be integers).
At each step, one new ball is added to the urn; if the urn currently contains
w white and b black balls, the next ball to be added is white with probability
w/(b + w), otherwise black.

Lemma 6. Consider a Polya urn that initially contains 1 1
2

black and 1 1
2

white balls.

(i) The random sequence of colors of added balls is exchangeable (i.e. in-
variant in law under all permutations affecting finitely many elements).

(ii) After n− 2 balls have been added, the probability that k− 1 of them are
white equals pn(k).

(Property (i) is well known, for arbitrary initial numbers of balls).

Proof. The probability of adding k−1 white followed by n−k−1 black balls
is

11
2

3

21
2

4
· · · k − 1

2

k + 1
× 11

2

k + 2

21
2

k + 3
· · · n − k − 1

2

n
=

2 (k − 1
2
)k−1(n − k − 1

2
)n−k−1

n!
.

(1)
Moreover, the probability of adding k − 1 white and n− k − 1 black balls in
any given order also equals (1), since we obtain the same denominators, and
the numerators in a different order. This gives the claimed exchangeability.
Therefore, the probability that k − 1 of the first n − 2 balls are white is (1)
multiplied by

(
n−2
k−1

)
, which equals the right side in Proposition 5 (ii).
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Let hn
m,k be the mass function of a hypergeometric distribution, i.e., let

hn
m,k(i) be the probability of obtaining i white balls when m are chosen at

random without replacement from an urn containing n balls of which k are
white. So

hn
m,k(i) = hn

k,m(i) =

(
k

i

)(
n−k

m−i

)
(

n

m

)

(where as usual we take
(

a

b

)
= 0 if b /∈ [0, a]).

Lemma 7. For integers n, m, j satisfying m ≤ n and 1 ≤ j ≤ m − 1,

∑

k∈Z

pn(k)hn−2
m−2,k−1(j − 1) = pm(j).

In particular the left side does not depend on n.

Proof. Consider the Polya urn of Lemma 6. When n − 2 balls have been
added, suppose m − 2 balls are chosen at random from these n − 2. Then
the left side is the probability that j − 1 of those chosen are white. By the
exchangeability in (i), this probability remains the same if we condition on
the event that the chosen balls are the first m − 2 to be added to the urn,
but then the probability is clearly pm(j) by Lemma 6 (ii).

We remark that a direct computational proof of Lemma 7 is also possible,
using induction on n.

Proof of Theorem 1. Consider the random uniform m-out-of-n subnetwork
ωn

m = (ωn)|A. Let q(n, m, k, j, t) be the probability that the tth swap in the
n-particle network ωn occurs in location k, and that this swap corresponds
to some swap in location j in the m-out-of-n-network. By the stationarity
in Proposition 5(i), and the fact that selecting m items at random from n is
invariant under permutations of the n items, q is constant in t. On the other
hand we have

q(n, m, k, j, 1) = pn(k) hn
m,2(2) hn−2

m−2,k−1(j − 1),

since given that the first swap in ωn has location k, the event in question oc-
curs if and only if the m chosen elements comprising A include the pair
k, k + 1, and exactly j − 1 of 1, . . . , k − 1. Now the required expecta-
tion is

∑
k∈Z

∑N

t=1 q(n, m, k, j, t). By the above observations, together with
Lemma 7 and the fact that hn

m,2(2) =
(

m

2

)
/
(

n

2

)
, this sum equals

(
m

2

)
pm(j).
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3 Proofs of additional results

Proof of Corollary 2. It is easy to check that of the 16 4-particle sorting
networks, the given 4 each have 3 swaps in location 2, while the remaining
12 each have 2. But Theorem 1 gives that the expected number of swaps in
location 2 is 9/4 = (1/4)3 + (3/4)2.

Proof of Proposition 4. Let X1, . . . , Xm be i.i.d. with Archimedes density as
in Conjecture 3. We start by noting two properties. First, the projection of
X1 onto any fixed direction has uniform distribution on [−1, 1]. Second, the
signed distance from 0 of the line through X1 and X2 has semicircle law, i.e.
density function 2

π

√
1 − r2 on [−1, 1]. (See [2, proof of Theorem 5]).

Since each pair of particles swaps somewhere in ω̂m, it suffices to compute
the probability that a given pair, say those corresponding to X1, X2, swap in
location j (and then multiply by

(
m

2

)
). This swap occurs when the rotating

projection line is perpendicular to the line through X1 and X2, at which time
the projections of X1 and X2 coincide, at a point R with semicircle law. This
swap is at location j precisely if j − 1 of X3, . . . , Xm are projected to the left
(say) of R; but the projections of these points are uniform and independent
of R. Thus the required expectation is

(
m

2

) ∫ 1

−1

(
m − 2

j − 1

)(1 + r

2

)j−1(1 − r

2

)m−j−1 2

π

√
1 − r2 dr. (2)

Leaving aside multiplicative constants and applying the change of variable
t = (r + 1)/2, the integral reduces to a standard Beta integral (see e.g. [7,
p. 148]): ∫ 1

0

tj−
1

2 (1 − t)m−j− 1

2 dt =
Γ(j + 1

2
)Γ(m − j + 1

2
)

Γ(m + 1)
.

Using Γ(1
2
) =

√
π, a routine computation then shows that (2) equals the

right side in Theorem 1.

We remark that the last computation may be viewed as an asymptotic
version of Lemma 7, in the limit n → ∞.
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Open questions

(i) Does the law of the random m-out-of-n sorting network converge as
n → ∞, for fixed m? (Conjecture 3 makes a specific prediction about
the limit, but even its existence it is not known.)

(ii) Our use of the Polya urn can be viewed as a natural way to couple the
law of the first swap location s1(ωn) for different values of n – indeed
the coupling has the property that s1(ωn+1)− s1(ωn) ∈ {0, 1}. Is there
a natural way to couple the entire uniform sorting networks ωn and
ωn+1? For example, can it be done in such a way that ωn = (ωn+1)|B,
for some random n-element set B?
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