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Abstract

We consider the following problem: given an i.i.d. family of Bern-
oulli random variables indexed by Z¢, find a random occupied site
X € Z% such that relative to X, the other random variables are still
ii.d. Bernoulli. Results of Thorisson [9] imply that such an X exists
for all d. Liggett [7] proved that for d = 1, there exists an X with
tails P(|X| > t) of order c¢t~'/2, but none with finite 1/2-th moment.
We prove that for general d there exists a solution with tails of order
ct~%2_ while for d = 2 there is none with finite first moment. We also
prove analogous results for a continuum version of the same problem.
Finally we prove a result which strongly suggests that the tail behavior
mentioned above is the best possible for all d.

1 Introduction

The following problems were considered in [7]. They were originally mo-
tivated by some problems involving tagged particles in the exclusion and
zero-range processes. We refer to [7] for more on those connections.

For 0 < p < 1 and a positive integer d, let v, = v,(d) denote the product
measure with parameter p on {0,1}2" (with the product o-algebra). Let
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n have distribution v, (so that {n(k) : £ € Z%} are i.i.d. Bernoulli with
parameter p), and define the measure v, by

v,() =v,(ne-|n0)=1).

Problem A. If  has distribution v,, find a Z“valued random variable X
(possibly using additional randomization) such that (X +-) has distribution
v,.

In the following continuum version of the above problem, II is a spa-
tial Poisson process regarded as a random non-negative integer-valued Borel
measure on R?,

Problem B. If II is a rate-1 spatial Poisson process on R?, find an R¢-
valued random variable Y (possibly using additional randomization) such
that II({Y}) = 1 a.s., and II(Y +-) is a rate-1 spatial Poisson process on R¢
with an added point at 0.

It is by no means obvious that either problem has a solution, but in fact
solutions to both exist for all d, p. This follows from much more general
results in [9]; for more information see [7], [10].

Writing | - | for the Euclidean norm on R¢, it is natural to ask how large
| X, |Y| must be for solutions to Problems A, B. In particular, what can be
said about their moments and tail behavior? These questions were essentially
fully answered for d = 1 in [7]. In particular the following two results were
proved there.

Theorem 1 Let d = 1.
(A) Foreach0 < p < 1 there exists a solution X to Problem A satisfying
P(IX|>t) < cip 2712,

where ¢; < 0.

(B) There exists a solution Y to Problem B satisfying
P([Y] > t) < et

where ¢ca < 0.



Theorem 2 Letd = 1.

(A) Any solution to Problem A satisfies E|X|'/? = cc.
(B) Any solution to Problem B satisfies E|Y|'/? = co.

Actually, even tighter bounds involving E|X At| were obtained in [7]. We
remark that the proof of Theorem 1 in [7] is constructive, in the sense that
an algorithm is given for choosing X (respectively Y') given 7 (respectively
IT). Additional randomization is not required for Problem B, or for Problem
A when p is the reciprocal of an integer. The explicit dependence on p in
the bound in Theorem 1 (A) is of interest because it allows Theorem 1 (B)
to be deduced via an alternative limiting argument.

We will prove the following.

Theorem 3 Letd > 1.

(A) Foreach 0 < p < 1 there exists a solution X to Problem A satisfying
P(IX|>1t) < cip™ P74,

where ¢; = ¢1(d) < 0.

(B) There exists a solution Y to Problem B satisfying
P(Y|>1t) < ept 42,
where ¢a = ca(d) < 0.
Theorem 4 Let d = 2.

(A) Any solution to Problem A satisfies E|X| = oo.
(B) Any solution to Problem B satisfies E|Y| = oc.

Our proof of Theorem 3 (A) is also constructive, and makes use of the
one-dimensional construction in [7]. The appearance of p~'/2 in Theorem 3
(A) will be important because it will allow (B) to be deduced from it via a
limiting argument. As remarked in [7], the technique used to prove Theorem
2 gives no information in the case d > 2. It does not even rule out the
possibility that X or Y is bounded. Our proof of Theorem 4 uses an entirely
different approach.



Our results provide an almost complete answer to the question posed
above for d = 2. It is natural to ask what can be said for d > 3. In
particular, is it the case that E|X|¥?, E|Y|%? must be infinite for all d?
For d > 3 we have been unable to improve on the following obvious lower
bounds (see the remarks in the next paragraph, however). For Problem A,
| X| is stochastically greater than the distance from the origin to the closest
occupied site of 7. (A site k¥ € Z? is said to be occupied if n(k) = 1). For
Problem B, |Y| is stochastically greater than the distance from the origin to
the closest point of II.

Finally we will prove Theorem 8, a result which strongly suggests that the
tail behavior of | X| in Theorem 3 (A) is the best that can be achieved for all d.
Loosely speaking, Theorem 8 can be expressed as follows. If X is constructed
from 7 by sequentially examining sites according to some algorithm, then the
distance from the origin to the furthest site to be examined has tails of order
at least ct=%2. In the course of proving this we will make use of another result,
Proposition 9. This latter proposition relates to a natural generalization of
Problem A to permutations of Z¢.

The following question is natural. Suppose Y is a solution to Problem B.
Can one use it to construct a solution to Problem A? The answer is yes; this
follows from an argument used in the proof of Theorem 4 (B).

The paper is organized as follows. Theorems 3 (A) and 4 (A) are proved
in Sections 2 and 3 respectively. The (B) parts of both theorems are proved
in Section 4. Theorem 8 and Proposition 9 mentioned above are stated and
proved in Section 5.

2 Construction in d dimensions

In this section we prove Theorem 3 (A). The following is an appealing idea for
solving Problem A for general d using the solution for d = 1 (Theorem 1 (A)).
Let s be an injective mapping from Z' to Z¢. Now for n € {0,1}2", define
nt e {0,1}2" by n'(k) = n(s(k)), apply the one-dimensional construction
to n' to obtain X', and let X = s(X'). It seems natural to guess that X
solves Problem A for 7, but this is in general false, as was shown in [7]. An
exception is the case when s(k) = (k,0,...,0), but clearly this s will only
give an X with the same tail behavior as X!. Our approach here will be
based on the above idea, but s will be a suitably chosen random mapping.
Suppose s is a bijection from Z! to Z¢ satisfying s(0) = 0. For y € Z¢,



we define 6,5 to be ‘s viewed from y’ thus:

0ys(k) = (s~ (y) + k) — .
Note that ;s is also a bijection satisfying 6,s(0) = 0.

Proposition 5 For any d > 2 there exists a random bijection S satisfying
S(0) = 0 such that

(i) For everyy € Z%, 0,5 has the same distribution as S.

(i) |S(k)| < C|k|Y? for all k € Z' a.s., where C = C(d) < oo is a
non-random constant.

We note that Proposition 5 is not obvious, even if restriction (ii) is
dropped. It may be proved using a construction based on space-filling curves.
It appears that this construction has been known for some time; a version in
the case d = 2 appears in [2]. We give a proof of the full result at the end of
this section. We are grateful to Yuval Peres and the anonymous referee for
advice on this point.

We now describe the construction for Theorem 3 (A) (followed by the
proof that it works). Let n have distribution v,(d). Choose S as in Proposi-
tion 5, independent of 7. Define n' € {0,1}%" by

n' (k) = n(S(k)).

We will use the superscript ! to denote ‘1-dimensional’ objects throughout. It
is clear that n' has distribution v,(1) (we will check this below). Therefore we
may use Theorem 1 (A) to find a Z'-valued random variable X' which solves
Problem A for n!. Indeed, choose X! to be conditionally independent of (7, S)
given n' (in other words, any additional randomization in the construction
of X1 is taken to be independent of (1, S)). Now let X = S(X1).

We will make extensive use of the following simple lemma.

Lemma 6 Let U,V be independent random variables (taking values in ar-
bitrary spaces) and suppose W = f(U,V), where W is a random variable
(also taking values in an arbitrary space) and f is a deterministic function.
Suppose that f(U,v) has the same distribution « for every deterministic v in
the support of V. ThenV and W are independent, and W has distribution
.



Lemma 6 is of course trivial in the case when V is a discrete random vari-
able. The general version may be proved by a straightforward application of
Fubini’s Theorem. We omit the details.

PROOF OF THEOREM 3 (A). For d = 1 the result is exactly Theorem 1
(A). For d > 2 we claim that X as defined above solves Problem A and has
the stated tail behavior.

First we claim that

n' and S are independent. (1)

This may be proved by applying Lemma, 6 to the independent random vari-
ables n and S. For every deterministic bijection s, the composition n(s(-))
clearly has distribution v,, so we deduce that n' = n(S(-)) and S are inde-
pendent, and also that n' has distribution v,,.
Now by the conditional independence assumption on X!, it follows from
(1) that
(n', X") and S are independent. (2)

Define R = 0xS. Recall that X = S(X'), so that R = 0g(x1)S, and
R(k) = S(X'+ k) — S(X'). We claim
(n', X') and R are independent. (3)

We will prove this using Lemma 6 and (2). By definition, R is a function of
(n*, X*) and S, and does not depend on n'. Therefore, defining Ry1 = Og(;1)S,
it suffices to prove that R,1 has the same distribution for each z!. Consider
the event

A= A(m,z',r) = {Rp (k) = r(k) for all —m <k <m},

for m a positive integer and r a bijection. We will prove that for fixed m and
r, P(A) is constant in z! provided —m < z' < m, and the above claim then
follows. To check this, observe that if —m < 2! < m then A equals the event

{0_,(—ayS(k) =r(k) for all —m <k <m}.

(The key point here is that, taking k = —z' in either expression for the event
and using the fact that R,1(k) = S(z'+k)—S(x'), we have that on the event,



S(z') = —r(—=') and therefore R,1 = 6_,(_,1)S). Hence by Proposition 5
i) we have

P(A) = P(S(k) =r(k) for all —m <k <m),

which does not depend on z'. Therefore (3) is proved.

Now define v' € {0,1}”" by 7' (k) = n' (X' +k). Since X' solves Problem
(A), 7' has distribution »%(1). Since 7' is a function of (', X"), (3) implies
that

7! and R are independent. (4)

We are now ready to check that X has the property required by Problem
A. Define v € {0,1}%* by (k) = n(X + k), so that it is required to check
that v has distribution v}(d). First observe that

y(k) =n(X +k) =0 (STHX + k) =7 (STH(X + k) = X') = (R (K))

Now for any deterministic bijection 7 with 7(0) = 0, it is clear that v (r(-))
has distribution v/;(d), so the required fact follows from Lemma 6 and (4).

Finally, we check that X has the claimed tail behavior. Since X = S(X1!),
by Proposition 5 (ii) and Theorem 1 (A) we have

P(X|>1t) < PCIX'"">1)
= P(X| > 0%

d

It remains to prove Proposition 5. The bijection S which we will construct
will have the additional property that

|S(k) — S(I)] = 1 whenever |k —1| = 1. (5)

We will construct S from a doubly-infinite directed path which visits all the
elements of Z¢. Here is some notation. Elements of Z¢ are called vertices. A
(directed) edge is an ordered pair, written [u,v), of vertices u,v € Z? such
that |[u—v| = 1. The vertices u, v are said to be incident to the edge [u,v). We
write E for the set of all edges. A graph is a subset of E. The vertex set of a
graph is the set of all vertices incident to its edges. For a graph E and a set of
vertices V', E(V) is the set of all edges in E having both incident vertices in V.
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A path is a graph of the form {[vy, v2), [ve, v3), ..., [Un_1,Vn)}, Where vy, ..., v,
are distinct. A touris a graph of the form {...,[v_1,vp), [vo, v1), [v1,v2), ...},
where the v; are distinct, whose vertex set is Z2.

We will construct a random tour 7', and then use it to define S as fol-
lows. S(0) = 0. For n > 0, S(n) is defined inductively to be the unique
vertex such that [S(n—1),S(n)) € T, and similarly S(—n) is defined so that
[S(—=n),S(—n+1)) € T. It is clear that S defined in this way is a bijection
from Z! to Z¢ satisfying (5).

We will use the following lemma. For an integer n > 0, and for v € Z9,
let Cy,(v) be the set of vertices in the cube of side 2" — 1 with its minimum
corner at v:

Co(v) =v+1{0,...,2" —1}* C Z“.

For m < n we say that Cy,(u) is a descendant of Cy,(v) if Cy(u) C Cp(v) and
all the coordinates of u — v are multiples of 2™. If F' is a graph, by a copy of
E we mean an image of E under an isometry of Z¢.

Lemma 7 Let d > 2. There ezists a (deterministic) sequence of graphs H,
for n >0 such that

(i) H, is a path with vertex set Cy(0).
(i1) If Cp(v) is a descendant of C,(0), then H,(Cp,(v)) is a copy of Hp,.

We omit the proof of Lemma 7. The required graphs H,, are the polygonal
approximations used in the construction of the Hilbert space-filling curve.
For d = 2 the construction is well known, appearing originally in [5]. Details
of the construction for general d may be found in [3]. For further information
about space-filling curves see [8].

PROOF OF PROPOSITION 5. Our aim is to construct a random tour 7" as
described above. We write {2 for the set of all graphs, which we associate in
the usual way with {0, 1}¥. We will construct probability measures i, 1 on
the corresponding product o-algebra. When describing events of 2, we will
sometimes write G for a typical graph in (2. For each n > 1 we will define a
random graph 7, with distribution u,. The graph 7" with distribution g will
be the weak limit of this sequence.

The graph T, is constructed as follows. We choose a cube of side 2" — 1
uniformly among those which contain the origin, and fill it with a copy of H,,
with its orientation chosen uniformly at random. Then we deterministically
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Figure 1: Part of a typical realization of T3 for d = 2. The origin 0 is marked
with a blob. Some 3-boxes and 2-boxes are marked with broken lines.

fill the remainder of space with disjoint translated copies of this graph. See
Figure 1 for an illustration. Formally, let o to be an isometry of Z? chosen
uniformly at random from the d!2¢ which preserve C,(0), and independently
choose a € Cy,(0) uniformly at random. Then define

T, = (U(Hn) ta+ 2%). (6)

uezZd

Let u, be the distribution of 7,.

Given a graph G € Q (which we think of as chosen according to u,), we
say that Cy,(v) is an n-bozx (of G) if G(Cy(v)) is a mazimal path in G. (For
G = T, arising as in (6), this corresponds to v being of the form a + 2"u.)
For m < n, we also say that C,,(w) is an m-boz if it is a descendant of an
n-box. See Figure 1. Thus, in a graph chosen according to u,, for m < n
every vertex of Z? lies in exactly one m-box almost surely, while for m > n
there are no m-boxes. Furthermore, Lemma 7 (ii) implies that if C' is any
m-box of T, then T,,(C) is a copy of H,.

Next we show that the sequence p, has a weak limit. Let A be a cylinder
event of €2, depending only on a finite set of edges K. Let W,, = W,,(A)



be the event that the vertex set of K lies entirely within a single m-box.
Note that since K is finite, if m is sufficiently large and n > m we have
0 < pun(Wy,) < 1. Thus for some my (depending on K), if mg < m < n we
have

:un(A) = :U'n(A ‘ Wm)“n(Wm) + :un(A | erz)(l - ,un(Wm)) (7)

We claim that for mg < m < n:

(i) pn(Wy,) is constant in n, and p,(W,,) = 1 as m — co.
(ii) pn(A | Wy,) is constant in n.

To see (i), note that the set of m-boxes has the same distribution under each
tn With n > m, and when 2™ is large compared with the diameter of K,
U (Wi) is close to 1. For (ii), note that under pu,(- | W), the m-box, C
say, which contains K is equally likely to be any cube C,,(v) containing K.
Furthermore, by Proposition 7 (ii) and (6), 7,,(C) is a copy of H,,, with all
possible orientations being equally likely.

Now letting n — oo and then m — oo in (7) and using (i),(ii) yields

lim sup i, (A | W) < liminf p, (A) < limsup p,(A) < lminf g, (A | W,).
m—00 n—oo n—00 m—00

Hence the limits lim,, o0 tim (A | Wi) and limy, o g, (A) exist and are equal.

We let p be the weak limit of the sequence pu,, and let T" be a graph with

distribution p. Thus for A a cylinder event,

p(A) = lim pon(A | Win(4). ®)

Next we must check that T is a tour almost surely. For a vertex v, let
A = A(v) be the event that T contains edges [u,v) and [v,w) for some
u # w, and no other edges incident to v. For vertices u,v and [ > 0, let
B = B(u,v,l) be the event that T contains a path of length at most [ with
u and v in its vertex set. It is sufficient to check that u(A(v)) =1 for all v,
and p(B(u,v,l)) = 1 for all u,v and some [ = [(u,v). But it is easily seen
that A(v) and B(u,v,l) are cylinder events, and that for suitable | = I(u,v),
tm (A | Win(A)) = pm(B | Win(B)) = 1 for m sufficiently large. Hence the
required conclusion follows from (8).

Now construct S in terms of 7" as described earlier. To complete the proof
we must check properties (i) and (ii) in Proposition 5. Property (i) is equiva-
lent to the assertion that the distribution of 7" is invariant under translations
of Z¢, and this follows immediately since 7}, has the same property.
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We now check (ii). Let G be a graph (chosen according to p or p,). For
a vertex v € Z¢, define A(v) to be the minimum size of a path in G with 0
and v in its vertex set (that is, the ‘distance from 0 to v along G’). For a
positive integer j, let F'(j) be the event that every vertex v with A(v) < j
satisfies [v| < C(d)j'/?, where C(d) = 2v/d + 3. It is sufficient to check that
u(F(j)) = 1for all j. Clearly F(j) is a cylinder event, and we will show that
tn(F (7)) =1 for all n sufficiently large, implying the required result.

Given j, choose m so that 24m=D < j < 29m and let G = T,, where
n > m. Suppose v satisfies A(v) < j < 2% By the properties of H,
(Proposition 7), 0 and v must lie in the same m-box or in adjacent m-boxes
(two disjoint m-boxes C, C' are said to be adjacent if there exist w € C and
w' € C" with |w —w'| = 1). Tt follows (by Pythagoras’ Theorem) that

o] < V(d—1)(2m)2 + (2-2m)2 < O(d)'/*.

Hence we have proved that p,(F(j)) = 1 as required. O

3 Necessary condition in two dimensions

In this section we prove Theorem 4 (A). We begin with a few comments
about the idea behind the proof. Suppose X is a solution to Problem A.
Then the construction that led to X from 7 can be applied to the random
field relative to site X to find a second site known to be occupied. This
construction can be repeated to obtain a sequence of occupied sites. If X
has finite first moment, then the ergodic theorem implies that this sequence
of sites can move away from the origin with at most a linear rate. In a box
of size n there are n? sites in total, and at least en of them are known to be
occupied by this argument. Since X solves Problem A, the other sites should
each be occupied with probability p. But this should contradict the Central
Limit Theorem for the number of occupied sites in the box viewed in terms
of the original random field.

PROOF OF THEOREM 4 (A). The random choice of X necessarily depends
on 7, but may also depend on other random choices. In the proof, it will
be important to separate explicitly these two types of dependence. We will
therefore begin by writing X as a function g of n and a random variable V'
that is independent of 1 and uniform on [0, 1]. (The choice of the uniform
distribution is made for specificity only — any continuous distribution would
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work just as well.) To do so, let ky, ky, ... be any ordering of Z2. Define
g:{0,1}% x [0,1] — Z?
as follows: Using the joint distribution of X and 7, put
Tn(n) = P(X €{ky, ...k} | m)-

This is defined for almost every 7, and is monotone in n, so that I',(n) can
be extended to all  so as to be monotone in n. Now put g(n,v) = k, if
[o1(n) < v < Ty,(n). Taking V to be independent of  and uniform on [0, 1],
we see that

Plg(n, V) =kn|n) = PTna(n) <V <Tun)|n)
L(n) = Tuoi(n)
P(X=k,|n) as.

for each n > 1. Therefore, without loss of generality, we may take X =
g(n, V) in the proof.

Next, we make a construction similar to that used in the proof of Propo-
sition 2.2 of [7]. Let the random variables 7y = n, {0y : £ > 0}, and
{Vk : k > 0} be all independent, with the following distributions: 7, has
distribution v,, oy is Bernoulli with parameter p, and V} is uniform on [0, 1].
Let Xo = g(no, Vo), and then define n; by

 no(Xo + k) if £ #0,
nl(k) - { 0o lfl{: = 0.

Since X, solves Problem A, n; has distribution v,. Therefore, it is natural
to define X; = g(m, V7). More generally, we define successively X,, and n,
by X, = g(nn: Vn) and

(X, + k if k£ #£0,
Mt (k) = { Zn( ) if k 7—_é 0.

Writing this recursion in the functional form

Mh+1 = F(Xn: s Un) = F(g(nnv Vn)vnnvgn)

exhibits 7, as a Markov process with stationary distribution v,. Since 7,
has this distribution, 7, is a stationary process, and hence so is X,. Let
S, = Xo + -+ X,_1 be the partial sums of this sequence. We will now
check that the following hold:

12



(1) 7(Spt+1) =1 a.s. for each n > 0,
(ii) 7. (Xn + -) has distribution v for each n > 0,
(iii) 7 (Xn + k) =

77(Sn+1 + ]f) if Sn_|_1 + k 7é Sz for all 1 S ) S n
0j-1 if Sn_|_1 + k= Sj, but Sn_|_1 + k 7£ SZ for all 71 <1< n.

Property (ii) for general n follows from the case n = 0 (which holds by the
defining property of Xj) and the fact that (n,, X,) is a stationary process.

The key to checking properties (i) and (iii) is the following fact. If for
some 0 < j < n and integer k

Spt1+k#S; forall j<i<n,

then m;(Sp11 + k — S;) is constant in [ for j <[ < n, and in particular takes
the same values for [ = n and for [ = j:

Mn(Xn + k) = 00(Sny1 + k= Sn) =0 (Sns1 +k = Sj).
To check this fact, note that for 7 <1 < n, the defining recursion gives
Mig1(Sng1 + &k — Sig1) = m( Xy + Sng1 + k& — Sip1) = m(Spgr + k= 5),
since Sp41 + &k — Si41 # 0. If in addition S,,41 + k£ = 5, it follows that
M (Xn + k) =0j(Sny1 + k= 5;) =n;(0) = 0j_1.

This gives the second part of (iii). If S,,41 + &k # S; for all 0 < i < n, we can
use the above fact with j = 0 to get

nn(Xn + k) = nO(Sn—H + k)a

which is the first part of (iii). For (i), we argue as follows. If S,; # S; for
all 1 <7 < n then the above fact with £k = j = 0 gives

N0(Sn41) = M (Xn) = 1.

On the other hand, if S, ;1 = S;;; and S,;1 ¢ {S1,-..,S;}, then
M0(Sn+1) = M0 (Si1) =1

13



by the previous case.
Now take I = (0,a)? for some integer a > 0 to be chosen later, and let

Ap =Y ma(Xn + k).
kenl
By choices to be made later, we will be able to assume that the most of the
sites S1, ..., Sy lie in nl with high probability. By (ii) above, A,, is binomially
distributed with parameters |nI N Z? and p. On the other hand, by (i) and

A= > o+ Y. o

leSp+1+nl: 7:1<5<n,
I#£S; V 1<i<n Sj€Sn+1+nl,
S;#8; V j<i<n

= >, ah- Y (-om)

1€Snt1+nl ji1<s<n,
5j€Snt+1+nl,
S;#S; ¥V j<i<n
= B, —C,, 9)

where B,, and C, are defined as in the last equality in (9). Our aim is to
show that each of A, and B, is approximately normal with mean n%a%p and
variance na’p(1 — p), while C,, is of order n, giving a contradiction.

Assume now for purposes of getting a contradiction that E|X,| < oo.
The ergodic theorem then implies that

lim 2% = Z (10)

a.s. and in L; for some random Z € R?. We may assume without loss of
generality that the distribution of Xy, and hence of Z, has been modified
by adding any given deterministic h € Z?. To see this, suppose g(n,V) is a
solution to Problem A, and define ¢’ by

g'(n,v) = g(Tum,v) + h,
where T}, is the shift on {0,1}** defined by (T,n)(k) = n(h + k). Define
X'=¢'(n,V) and X = g(Tn, V). Then X' = X + h, and
nX'+10) = ng'(n,V)+1)
= n(g(Tin, V) +h+1)
= (Tin)(g(Tun, V) +1)
= (Tim)(X +1)
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so that n(X' + -) has distribution v},
The point of the previous observation is that given ¢ > 0, we may assume
without loss of generality that

P(Z<(-1,-1))>1—c¢ (11)
and
P(S, =0 for some n > 1) <e. (12)

(The first inequality in (11) is understood to be coordinate-wise.) That (11)
can be achieved by adding a constant to g is immediate, since adding a
constant to g has the effect of adding the same constant to Z. To check that
(12) also can be so achieved, note that (10) implies that

|l
sup — < 00 a.s.,
n n

so that for h € Z? with |h| sufficiently large,
Sn

P(S,, — nh = 0 for some n > 1) =P(— = h for some n > 1) <e.
n

By (11), a can be taken sufficiently large so that
P((—a—l,—a—l) <Z< (—1,—1)) >1— 2 (13)
Since
P(—Sj € _]I) < P(—Sj S TLI)
for j < n, it follows from (10) and (13) that
sup P(—S; ¢ nl) < 3e (14)

n/2<j<n

for sufficiently large n.
Now, we have

ECn = ZP(aj_lz(), SjESn+1+TLI, S]#SZV_]<ZSTL)
j=1

[n/2]

> [P0 =0) = P(S; ¢ Suss + D)

j=1

Vv
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—P(S; = S, for some j < i < n)]
ln/2]

= [1 —p—P(=Sps1-5 ¢ nl)

1

~

<.
Il

—P(Skzoforsomelgkgn—j)].

(Here |-| denotes the integer part). Applying (12) and (14), it follows that

EC, S 1—p—4e

lim inf 0 15
imint 27 2 = 0 5
provided e is sufficiently small.
By the Central Limit Theorem,
An 2,2
S 2P 5 N(0,a?p(1 - p)). (16)

n

Here = denotes convergence in distribution, and N (0, 0?) is the normal dis-
tribution with mean 0 and variance o2. We want to prove that also
B,, — n?a?
——=E = N(0,a%(1 - p)). (17)
Before proving (17), we note that (9), (15), (16) and (17) are incompati-
ble, so we will have a contradiction to the assumption that E|X,| < co. To
see this, suppose that these four statements are correct. By the definition of
C, in (9), 0 < C,, < n, so the distributions of C,,/n are tight. Passing to a

subsequence, we may assume that
2,2

<Bn —na’p %

n ‘n

) = (B,0),

where B is N(0,a?p(1 — p)) by (17) and EC > 0 by (15) and the bounded
convergence theorem for convergence in distribution. But by (9),

A, —n*a’p B, —-n?a*p C,

n n n

The limiting distribution of the right side above is that of B — C, which has
a nonzero mean, while the limit of the left side is normal with mean zero by
(16). This is a contradiction.
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So it remains to prove (17). Let R be the set of rectangles
R ={[a,b] X [¢,d] : a,b,c,d € R}.

For A € R, let
Wn(A) =

n(l

ny/p(1 l§4[

and let W be the standard Brownian sheet. That is, for A,B € R, W(A)
has normal distribution with mean zero, E[W (A)W (B)] equals the area of
AN B, and W(A) is a.s. continuous in A. The following invariance principle
is proved in [6]:

w, = W, (18)

where now =- denotes weak convergence in the space D, which we define
next. For an integer n > 1, let D, be the set of all functions on R which,
as a function of A, change only when an edge of A crosses a point in n 'Z2.
Then D is the closure of Uy2, D, in the topology of uniform convergence
on compact sets. Note that D is a complete separable metric space with
this topology, and that it contains the continuous functions. Furthermore,
W, € D. (Actually, in [6], (18) is proved for a smoothed version of W,.
However, since we are considering only rectangles A, the smoothed version
implies the one we want — see for example Corollary 4.6 of [1] for more on
this point).

By (10) and (18), the sequence (W, S,,/n) is tight in DxR?, and therefore
relatively compact. We will show that

(Wh, Sn/n) = (W, 2), (19)

where W and Z are taken to be independent. By the relative compactness, it
is enough to show that any subsequential limit of (W,,, S,,/n) has independent
components. To simplify notation, we will not distinguish between the full
sequence and a convergent subsequence.

So, let Z be the limit in (10) and let L, be the following increasing
sequence of squares in Z2:

Ln — [_n 1/3]2 N Z2

Let F, be the o-algebra generated by the random variables {n(k) : k € L,},
{o/ : 1 > 0} and {V; : | > 0}, and put Z, = E(Z | F,). Then Z, is

17



independent of {n(k) : £ ¢ L,}, and E|Z, — Z| — 0 by the martingale

convergence theorem. It follows from (10) that

Sn — 0.
n
Now let
Wy(A) = = > In
lEnA A¢Ly,
Then

W(4) — W) < — Lo

— ny/p(l—p)

— 0

(20)

(21)

as n — oo. Now it follows from (20) and (21) that whenever (W, S,,/n) has a

weak limit, so does (W), Z,,), and the limits are the same. But (W,

Z,) does

have independent coordinates, since W), is a function of {n(l) : [ ¢ L, }, and
Z, is independent of these random variables. This completes the verification

of (19).
Finally, note that
2,2
Bn nor = Wn<Sn+1 +I) - (I)(Wﬂa Sn+1
ny/p(1 —p) n n

where @ : D x R? — R is given by

O(w,z) =w(x+I).

Since ® is continuous at all (w, x) for which w is continuous on R, and W is

continuous on R, it follows from (19) that

B, —n?a?p
ny/p(1 = p)

where W and Z are independent. But

= oW, 2),

(W, Z) = W(Z +1).

Since W (z + I) has distribution N (0, a?) for each deterministic z, it follows
by Lemma 6 that W (Z + I) has distribution N (0, a?) as well. This completes

the proof of (17) as required.
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4 Poisson case

In this section we deduce the (B) parts of Theorems 3 and 4 from the (A)
parts.

PROOF OF THEOREM 3 (B). Forn > 1and k € Z?let K, (k) be the (open)
cube of side n~! centered at n~1k:

K,(k)=n""k+ (—(2n)7%, (2n)7H)¢

(here (-,-) denotes an interval of R). Given the Poisson process II, define
7 € {0,1}2° by
(k) = 1 ATI(K, (K)),

where A denotes minimum; thus n,(k) = 1 if and only if K, (k) contains at
least one Poisson point. Then 7, has distribution v,, where

pn=P(U(Kn(K) > 1) =1—¢ "~ (22)

as n — oo. Using Theorem 3 (A), choose X,, solving Problem (A) for 7,.
Then we have

P(n7'X,| >t) = P(X,|>nt)
Clp;1/2n—d/2t—d/2

Cgt_d/Q (23)

IN A

for some constant ¢y, by (22).

Let II,, be the point process that has a point at n='k if n,(k) = 1, and no
others. Let II* be a rate-1 Poisson process with an extra point at the origin.
We claim that

m, = I, (24)

and
M,(n X, +-) = TII°(), (25)

where = denotes weak convergence in the space M of locally finite measures
on R¢. Both statements are consequences of the Poisson approximation to
the Binomial, since II,, and II,(n' X, +-) are Bernoulli random fields on the
grid of points n~1Z<.
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By (23) and (24), the sequence (II,,n X,) is tight on M x R%, and
therefore relatively compact by Prohorov’s Theorem ([4] Chapter 18, Theo-
rem 17). Let (Ily, Y5) be a weak limit point of this sequence. Then (24) and
(25) imply that II;, and II(Yy + -) have the distributions required by Prob-
lem B. Note that these are simply properties of the joint distribution of the
random vector (Ily, Yp), not of any particular realization of it.

The remaining issue is to see how to use the joint distribution of (Ilo, Y5)
constructed above to choose an Y with the right properties for a given rate-1
Poisson process II. The solution is simply to use the conditional distribution
of Y, given I1y, and apply this to the the given II: by enlarging the probability
space, one can choose Y via the prescription

PYe-|II)=P((Yy €-|1).
U

PrOOF OF THEOREM 4 (B). Let II be a rate-1 spatial Poisson process on
R?, and suppose Y is a solution to Problem B for IT with E|Y| < co. We
will deduce a contradiction to Theorem 4 (A).

Let @ be the unit square [0,1)? C R?, and let A have uniform distribution
on @, independent of (I1,Y"). For u € R we write |u] for the greatest integer
less than or equal to u, and {u} = u — |u]. For v = (v, vs) € R? we write
lv] = (|v1], [v2]) and {v} = ({v1}, {v2}). Now define X = |V + A]| and
B = {Y + A}. (We imagine a grid of unit squares with its origin at —A.
Square 0 is the square containing 0, and square X is the square containing
Y. The location of Y within square X is B). Note that

X+B=Y+A. (26)

We claim that B has uniform distribution on @), and that it is independent
of (I, Y). This is proved by an application of Lemma 6 as follows. Since
A and (I1,Y) are independent, and B = {Y + A}, it suffices to check that
{y + A} is uniform on @ for each fixed y; but this is an elementary property
of the uniform distribution on Q).

Now define 1 € {0,1}%’ by

n(k) = LATI(Q — A + k). (27)

(Thus n(k) is 1 if and only if square k contains at least one Poisson point).
For any fixed a, it is easily seen that 7, defined by 7,(k) = 1AII(Q —a+k) has
distribution v;_.-1; hence Lemma 6 implies that n has distribution v;_,-1.
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We claim that X is a solution to Problem A for 7. To prove this, define ~
by v(k) = n(X + k), and A by A(-) =II(Y + ). Note that by (26) and (27),

vk)=1ATH(Q - A+ X +k)=1ATI(Q—-B+Y +k) =1AAQ—-B+k)

(compare (27)). Since B and (II,Y) are independent, B and A are inde-
pendent, and since Y solves Problem B, A is a Poisson process with an
added point at 0. For any b € @) it is easy to check that 7, defined by
(k) = 1 AA(Q — b+ k) has distribution vf __, (note in particular that
0€ @ —bsov(0)=1a.s.), so a final application of Lemma 6 shows that 7
has distribution v;___; as claimed.

Finally we have E|X| < E|Y| + /2 < 00, contradicting Theorem 4 (A).
O

5 The set of examined sites

Let X be a solution to Problem A. Imagine that X is constructed from 7 by
some algorithm which sequentially examines the values 7(k) for sites k € Z¢
until some stopping time, finally choosing an X in the set of examined sites.
The algorithm may use additional randomization if desired. We formalize
this idea as follows. Define the box B,, C Z¢ by

B, ={-n,...,n}"%

Let n have distribution v,, suppose X is a Z%-valued random variable and
suppose N is a non-negative integer-valued random variable. We say that
(X, N) is a stopping solution to Problem A if the following hold.

(i) X is a solution to Problem A,

(ii) For any z, n, the o-algebra generated by the event {X = z, N = n} and
the random variables {n(k) : k¥ € B, } is independent of that generated
by {n(k) : k ¢ By}

The random set By should be thought of as the set of examined sites. As a
consequence of (i),(ii), any stopping solution has the additional property

X € By as. (28)
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To see this, note that by (i),
1=Pn(X)=1) = Pn(X)=1|X € By)P(X € By) +
P(n(X)=1|X ¢ By)(1 - P(X € By)),

but we have P(n(X)=1|X ¢ By) = p <1 by (ii).

From [7] and the proof of Theorem 3 (A), it may be seen that for the
X constructed in Theorem 3 (A), (X, N) is indeed a stopping solution for
some N. Furthermore this N can be chosen such that P(N > n) < ¢\n~%?
for some ¢ = ¢|(p,d) < co. For d = 1, this is achieved by taking N = X
in Theorem 1 (A); that this is possible follows from the proof in [7]. For
general d, the following extension of Proposition 5 is required. In part (ii) of
that result, all of the sites S(0),S(1),...,S(k) lie within distance C|k|'/? of
0. This follows directly from the proof of Proposition 5.

Theorem 8 Letd>1 and 0 < p < 1. If (X, N) is any stopping solution to
Problem A then
P(N > n) > csn 2,

where ¢ = c3(p,d) > 0.

As remarked in the introduction, Theorem 8 makes it plausible that the tail
behavior of |X| in Theorem 3 (A) is essentially the best possible for all d.
This is because it would be very surprising if the construction of a solution X
with optimal tail behavior required the examination of sites ‘much further’
from the origin than the final choice of X.

In the proof of Theorem 8 we will make use of Proposition 9 below, which
is of interest in its own right. Let 7 be a permutation of Z¢. We define

|7| =min{n > 0:7(k) =k for all k ¢ B,},

where the minimum of the empty set is taken to be co. Thus, || < n if 7
disturbs only sites in B,. A permutation 7 acts on elements 7 of {0, 1} via
(7n)(k) = n(x(k)), and on measures 1 on {0,1}2 via (7p)(A) = p(z~'(A)).
The following result relates to a natural generalization of Problem A to per-
mutations.

Proposition 9 Let n have distribution v,, and suppose 7 is a random per-

mutation of Z% with the property that mn has distribution v*. Then
p
P(|m| > n) > can 42,

where ¢4 = c4(p,d) > 0.
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We remark that the bound in Proposition 9 is essentially optimal; that is,
there exists such a 7 with P(|7| > n) < esn~ %2, where c5 = ¢5(p, d) < 0o. To
prove this, let (X, N) be a stopping solution satisfying the bound of Theorem
3 (A), as described above. It will follow from the proof of Theorem 8 that
we can construct a m having the required properties from (X, N).

PROOF OF PROPOSITION 9. Our proof is similar to that of Theorem 3.1 in
[7], which in turn is based on the shift-coupling inequality; see [10] Chapter
7. The total variation norm || - || on signed measures is defined as usual by
|l = supy. <1 [ fdp. We claim that

1 1 .
B > v, = Y ayy|| <2P(n| > n), (29)

| Bn|

" ailal<n " ailal<n

where each sum is over all | B, |! permutations « for which |a| < n. Equation
(29) is a variant of the shift-coupling inequality.
To prove (29), note that by the assumptions of the proposition, the left
side equals the supremum over |f| <1 of
1 1
B 2 Bilem =g > Ef(e)n) (30)

" azlal<n

" ailal<n

where 7 is the composition of permutations defined by (7o) (k) = m(«(k)).
By conditioning on 7, (30) equals

ﬁ 3y E[f(om)|7r]—|Bl—|‘ > Elf((ma)y) |a] |,

™M ailal<n T ailal<n

and we may bound this expression as follows. For every fixed 7 with || < n,
we have {ra : |a| < n} = {a: |a| < n}, so the two sums are equal in this
case. On the other hand, each of the two terms is bounded above in absolute
value by 1, for every fixed 7. So (30) is at most

0P(|7| < n) + 2P(|7| > n).

Now taking the supremum over f gives (29).

Next we compute the left side of (29) as follows. Evidently, av, = v,.
*,a71(0

Furthermore, we have av; = v,

v R () = vp(n € - | n(k) = 1).

) where vk is defined by
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Ri
By
X °
° 0
By + X

Figure 2: The cuboid R.

Hence the left side of (29) equals

1 *,k
Vp_‘Bn| Zl/p ‘ (31)

keB,

We now proceed as in [7]. The expression above can be written as

1 dl/*’k
1— P_\dv,.
/ B, > dv, |

kEBn

But under the measure v,, the sum in this expression is equal to 1/p times a
binomial random variable with parameters |B,|, p. It follows by the Central
Limit Theorem that (31) is asymptotic to

d|By| Y2 =d(2n+1) Y2,

for some ¢’ = ¢/(p) > 0. Combining this with (29) yields the required result.
4

PrROOF OF THEOREM 8. Let 1 have distribution v, and let (X, N) be a
stopping solution. A cuboid is a subset of Z? which is a direct product of sets
of the form {a,a +1,...,b}. Define R = R(X, N) to be the smallest cuboid
which contains By U (By + X)) as a subset. (See Figure 2 for an illustration
in the case d = 2). Now define 7 : Z¢ — Z% by

X —k if kK € R,
k otherwise.

(k) =
It is easy to check that 7 is a permutation, and that |7| < 2N (by (28); also
see Figure 2). We will prove that 77 has distribution v;. The required result

will then follow immediately from Proposition 9.
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Write A = 7, so that

(X -k ifkeR
Ak) = { n(k) otherwise.

Define & € {0,1}2" by £(k) = n(X — k). Since n(X + -) has distribution v,
¢ has this distribution also. We need to prove that A and £ have the same
distribution. In fact we will prove the stronger statement

PAe-, X=x,N=n)=Pe-, X=2,N=n) (32)

for all x, n; this gives the required fact on summing over z,n. It is sufficient

to check (32) for increasing cylinder events, and we therefore proceed as

follows. Fix z and n, and write T for the event {X =z, N = n}. Let K be

any finite subset of Z¢, and write K' = K N B,, K" = KN (R(z,n) \ By)
and K" = K N R(z,n)¢. Then we have the chain of equalities
PAMk)=1VkeK, K T)

= P(n($—k):1Vk€K',n(x—k)lekeK”,

n(k) =1V ke K", T)
= Pplz—k)=1VkeK' , T)P(n(z—k)=1VY ke K")
xP(n(k)=1V ke K")
= Pplx—k)=1VkeK ,T)Pnlx—k)=1VkeK"
xPn(zx—k)=1V ke K")
= P(ne-kK)=1VkeK  nz—k)=1VkekK",
e—k) =1V keK", T)
= PEk)=1VkeK,KT).
In the second and fourth equalities we have used property (ii) of a stopping
solution, the independence of the random variables {n(k) : k € Z%}, and the

fact that if £ € K" then k,xz — k ¢ R(z,n) 2O B,. We have thus established
(32), as required. O
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