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Abstract. Let Π and Γ be homogeneous Poisson point processes
on a fixed set of finite volume. We prove a necessary and sufficient
condition on the two intensities for the existence of a coupling
of Π and Γ such that Γ is a deterministic function of Π, and all
points of Γ are points of Π. The condition exhibits a surprising
lack of monotonicity. However, in the limit of large intensities, the
coupling exists if and only if the expected number of points is at
least one greater in Π than in Γ.

1. Introduction

Given a homogeneous Poisson point process on R
d, it is well known

that selecting each point independently with some fixed probability
gives a homogeneous Poisson process of lower intensity. This is often
referred to as thinning. Ball [1] proved the surprising fact that in d = 1,
thinning can be achieved without additional randomization: we may
choose a subset of the Poisson points as a deterministic function of the
Poisson process so that the chosen points form a Poisson process of any
given lower intensity; furthermore, the function can be taken to be a
translation-equivariant factor (that is, if a translation is applied to the
original process, the chosen points are translated by the same vector).
Holroyd, Lyons and Soo [7] extended this result to all dimensions d,
and further strengthened it by showing that the function can be made
isometry-equivariant, and that the non-chosen points can also form a
Poisson process (it cannot be independent of the process of chosen
points, however). Evans [3] proved that a Poisson process cannot be
similarly thinned in an equivariant way with respect to any group of
affine measure-preserving maps that is strictly larger than the isometry
group.

Here we address the question: can the same be done for a Poisson
process in a finite volume? Postponing considerations of equivariance,
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we simply ask whether there exists a deterministic thinning rule giving
a Poisson process of lower intensity. The answer depends on the two
intensities, as follows. Let L denote Lebesgue measure on R

d.

Theorem 1. Fix λ > µ > 0, and a Borel set S ⊂ R
d with LS ∈ (0,∞).

Let Π be a homogeneous Poisson process of intensity λ on S. Let X
and Y be Poisson random variables with respective means λLS and
µLS. The following are equivalent.

(i) There exists a measurable function f such that f(Π) is a homo-
geneous Poisson process of intensity µ on S, and every point of
f(Π) is a point of Π almost surely.

(ii) There exists an integer k ≥ 0 such that

P(X = k) ≤ P(Y = k),

and P(X ≤ k + 1) ≤ P(Y ≤ k).

(iii) There is no integer k ≥ 0 such that

P(X = k + 1) > P(Y = k + 1),

and P(X ≤ k + 1) > P(Y ≤ k).

Figure 1 depicts the pairs (λ, µ) for which conditions (i)–(iii) hold. If
f satisfies condition (i) of Theorem 1 we say that f is a (deterministic,
Poisson) thinning on S from λ to µ. The domain and range of f are
both the set of simple point measures on S. The equivalence of (ii)
and (iii) is of course a relatively mundane technicality, but it is useful
to have both forms of the condition available.

Remark 1. By the Borel isomorphism theorem (see e.g. [10, 3.4.24])
and the mapping theorem [6], Theorem 1 generalizes immediately to
any standard Borel space with a finite non-atomic measure in place of
L. By the same token, it suffices to prove Theorem 1 for the special
case S = [0, 1].

The corollaries below follow from Theorem 1 by an analysis of the
curves in Figure 1.

Corollary 2 (Monotonicity in λ). Suppose there is a thinning from λ
to µ on [0, 1].

(i) If λ′ > λ, then there exists a thinning from λ′ to µ.
(ii) If µ′/λ′ = µ/λ and λ′ > λ, then there exists a thinning from λ′ to

µ′.

Corollary 3 (Non-monotonicity in µ). There are positive real numbers
λ > µ > µ′ such that there exists a thinning from λ to µ but not from
λ to µ′.
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Figure 1. The shaded (closed) region is the set of pairs
of intensities (λ, µ) for which a thinning exists in the
case LS = 1. Also shown are the curves P(X ≤ k +1) =
P(Y ≤ k) for k = 0, . . . , 5 (red), the curves P(X = k) =
P(Y = k) for k = 1, . . . , 4 (blue), and the line µ = λ.

Corollary 3 may come as a surprise. However, it follows from The-
orem 1 by a numerical computation or an inspection of Figure 1. In
particular, an example with LS = 1 is (λ, µ, µ′) = (1.45, 0.7, 0.6), (as
may be checked by taking k = 1 in Theorem 1 (ii) and k = 0 in (iii)).
Furthermore, there are examples satisfying λ = n + 1/2 + o(1) and
µ, µ′ = n − 1/2 + o(1) as n → ∞.

For µ > 0 define

λc(µ) := inf
{
λ > µ : there is a thinning from λ to µ on [0,1]

}
.

By Theorem 1 (ii) and Corollary 2 (i), there exists a thinning from λ
to µ if any only if λ ≥ λc(µ).

The next corollary states that there exists a thinning if the average
number of points to be deleted is at least one, while the converse holds
in asymptotic form.
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Corollary 4 (Asymptotic threshold). We have λc(µ) ≤ µ + 1 for all
µ > 0, and λc(µ) ≥ µ + 1 − o(1) as µ → ∞

Our construction of thinnings relies on the following key result, which
states that given n unordered uniformly random points in an interval,
we may deterministically delete one of them in such a way that the
remaining n− 1 are again uniformly random. Write B{n} for the set of
all subsets of B of size n.

Proposition 5 (One-point deletion). Let U1, . . . , Un be i.i.d. ran-
dom variables uniform on [0, 1], and define the random set U :=
{U1, . . . , Un}. There exists a measurable function g : [0, 1]{n} →
[0, 1]{n−1} such that g(A) ⊂ A for all A, and

g(U)
d
= {U1, . . . , Un−1}.

Moreover, there exists a measurable v : [0, 1]{n} → [0, 1] such that v(U)
is uniform on [0, 1] and is independent of g(U).

Even in the case n = 2, the first claim of Proposition 5 is far from ob-
vious, and makes an entertaining puzzle. Of course, the claim would be
trivial if we allowed g to be a function of the ordered tuple (U1, . . . , Un),
or a function of U together with an independent roll of an n-sided die.

The function v in Proposition 5 may be thought of as extracting
“spare” randomness associated with the location of the deleted point
U \ g(U). This will be useful in the proof of Theorem 1, because it
will make it easy to delete a random number of further points once one
point has been deleted.

Proposition 5 is somewhat reminiscent of the following fact proved
in [5] (although the proofs appear unrelated). Given a homogeneous
Poisson process Π on R

d, it is possible to choose a point W of Π, as
a deterministic function of Π, so that deleting W and translating the
remaining points by −W yields again a homogeneous Poisson process.

Proposition 5 motivates the search for couplings of Poisson random
variables X and Y such that either X = Y = 0 or X > Y . An impor-
tant observation of Ball [1, Lemma 3.1] is that the standard “quantile
coupling” (i.e. X = F−1

X (U) and Y = F−1
Y (U) where FX , FY are the

distribution functions and U is uniform on [0, 1]) has this property pro-
vided the mean of X is sufficiently large as a function of the mean of
Y . More generally, given a coupling of Poisson random variables X, Y
with means λ, µ such that X > Y except on an event A ∈ σ(X) on
which X = Y , it is not difficult to show using Proposition 5 that there
exists a thinning from λ to µ. Condition (ii) of Theorem 1 implies the
existence of such a coupling.
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Remark 2 (Infinite volumes). In the case of infinite volumes it is
easier (but still nontrivial) to show that a Poisson thinning from λ to
µ always exists when λ > µ; see [7, Example 2]. Our results yield
the following alternative construction, with the additional property that
whether or not a point is deleted is determined by the process within
a fixed finite radius. Partition R

d into cubes of volume 1/(λ − µ).
By Corollary 4 there exists a thinning on each cube from λ to µ; by
applying each simultaneously we obtain a thinning on all of R

d.

The paper is organized as follows. In Section 2 we will prove some
easier parts of Theorem 1. In Section 3 we will prove Proposition 5. In
Section 4 we will define the coupling of Poisson random variables that
will be used to prove the existence of a thinning. In Section 5 we will
finish the proof of Theorem 1 and also prove the corollaries. Finally
in Section 6 we will briefly address some variant concepts, including
deterministic thinnings that are equivariant with respect to a group of
isometries, and deterministic splittings, where the points of the Poisson
point process are partitioned into two sets each of which forms a Poisson
point process. We will also address deterministic thickening: we show
that on a finite volume, it is impossible to add points, as a deterministic
function of a Poisson point process, to obtain a Poisson point process
of higher intensity.

Acknowledgements. We thank Michael Brand for valuable com-
ments.

2. Proof of Theorem 1: easy implications

We will prove Theorem 1 by showing that for the existence of a
thinning as in (i), condition (iii) is necessary, (ii) is sufficient, and (iii)
implies (ii).

Let M be the space of all simple point measures on [0, 1]. For ν ∈ M,
we denote the support of ν by

[ν] := {x ∈ [0, 1] : ν({x}) = 1} .

Let N = {0, 1, . . .}. For each n ∈ N, let Mn := {ν ∈ M : ν([0, 1]) = n}.
The following characterization is useful. A point process Π on [0, 1] is a
Poisson point process of intensity λ if and only if: the random variable
Π([0, 1]) is Poisson with mean λ, and, for each n ∈ N, conditional
on Π ∈ Mn, the set [Π] has the distribution of {U1, . . . , Un}, where
U1, . . . , Un are i.i.d. random variables uniformly distributed on [0, 1].
See [8, Theorem 1.2.1] or [6] for background.
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Proof of Theorem 1: (i) =⇒ (iii). Let Π be a Poisson point process
on [0, 1] with mean λ and let f be a thinning from λ to µ. Set X :=
Π([0, 1]) and Y := f(Π)([0, 1]) and let k ∈ N be such that

P(X = k + 1) > P(Y = k + 1). (1)

We will show that
P
(
X = Y = k + 1

)
= 0. (2)

In other words, if on the event X = k + 1 the thinning f sometimes
deletes points of Π, then it must (almost) always delete points. Since
X ≥ Y , (2) is inconsistent with

P(X ≤ k + 1) > P(Y ≤ k).

Thus if there exists a thinning then condition (iii) holds.
It remains to show (2). Let Q the law of {U1, . . . , Uk+1} where the

Ui are i.i.d. uniform in [0, 1]. Let J := {ν ∈ Mk+1 : f(ν) = ν}. Thus,
J is a set of measures where f does not delete any points. Let [J ] :=
{[ν] : ν ∈ J }, so that

P(Π ∈ J ) = P(X = k + 1) · Q([J ]),

and also
P(f(Π) ∈ J ) = P(Y = k + 1) · Q([J ]).

Since {Π ∈ J } ⊆ {f(Π) ∈ J }, we deduce

P(X = k + 1) · Q([J ]) ≤ P(Y = k + 1) · Q([J ]). (3)

We see that (1) and (3) force Q([J ]) = 0. Hence P(Π ∈ J ) = 0, which
implies (2). �

Proof of Theorem 1: (iii) =⇒ (ii). Since λ > µ we have P(X = 0) <
P(Y = 0), and since

∑
i∈N

P(X = i) =
∑

i∈N
P(Y = i) = 1, there exists

a minimal integer k ≥ 0 such that

P(X = k + 1) > P(Y = k + 1).

By condition (iii) we must have that

P(X ≤ k + 1) ≤ P(Y ≤ k).

By the minimality of k we have that

P(X = k) ≤ P(Y = k). �

It remains to prove that (ii) implies (i) in Theorem 1, which we will
do in Section 5 after assembling the necessary tools. Our strategy for
constructing the thinning f will be as follows. If the number of points
Π(S) is at most k, we retain all of them; otherwise, we first delete one
point using Proposition 5, then delete a suitable random number of
others.
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3. Deleting uniform random variables

We will give two proofs of Proposition 5. Our original proof is
given in Section 6 and gives a function g with an additional rotation-
equivariance property. The proof below follows a suggestion of Michael
Brand; a version appears on his web page of mathematical puzzles [2,
March 2009]. Both proofs rely on the following observation.

Lemma 6. Let Q be a probability measure on an arbitrary Borel space
S. Let Qm be the law of {U1, . . . , Um}, where the Ui are i.i.d. with law
Q. Let g : S{n} → S{n−1} be measurable, and define for B ∈ S{n−1},

R(B) =
{
w ∈ S : g(B ∪ {w}) = B

}
.

If for Qn−1-a.e. B ∈ S{n−1} we have Q(R(B)) = n−1, then Qn ◦ g−1 =
Qn−1.

Proof. We prove the stronger fact that the Radon-Nykodim derivative
d(Qn ◦ g−1)/dQn−1 is Qn−1-a.e. equal to n Q(R(·)) (without any as-
sumption on Q(R(B))).

Let U1, . . . , Un be i.i.d. with law Q and write Um = {U1, . . . , Um}.
Let A ⊆ S{n−1} be measurable. Since the Ui are exchangeable,

Qn ◦ g−1(A) = P
(
g(Un) ∈ A

)
= n P

(
g(Un) = Un−1 ∈ A

)
.

We have the identity of events
{
g(Un) = Un−1 ∈ A

}
=

{
Un ∈ R(Un−1)

}
∩ {Un−1 ∈ A}.

Therefore, since Un−1, Un have respective laws Qn−1, Q,

Qn ◦ g−1(A) =

∫

A

n Q(R(B)) dQn−1(B). �

Proof of Proposition 5. By the Borel isomorphism theorem we may as-
sume that the Ui are i.i.d. uniform in S = {1, . . . , n}× [0, 1]× [0, 1] in-
stead of in [0, 1], and write Ui = (Xi, Yi, Zi). Let Qm be as in Lemma 6.

Let K be the {1, . . . , n}-valued random variable given by

K ≡
n∑

i=1

Xi mod n.

Let W = (X ′, Y ′, Z ′) be the element of U that has the Kth smallest
Yi. Define

g(U) = U \ {W}; v(U) = Z ′.

Since the Xi’s, Yi’s and Zi’s are all independent it is clear that v(U)
is uniform on [0, 1] and independent of g(U). It remains to show that
g(U) has law Qn−1.
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To see this, let B ∈ S{n−1} and observe that for a.e. y′, z′ ∈ [0, 1]
there is a unique w = (x′, y′, z′) ∈ S so that g

(
B ∪ {w}

)
= B. Thus

Q1

{
w ∈ S : g

(
B ∪ {w}

)
= B

}
= n−1.

It follows from Lemma 6 that Qn(g−1(·)) = Qn−1(·), as required. �

The following corollary of Proposition 5 states how the “spare” ran-
domness will be utilized in the proof of Theorem 1. Write B{<n} for
the set of all subsets of B of size strictly less than n.

Corollary 7. Let U1, . . . , Un be i.i.d. random variables uniformly dis-
tributed on [0, 1], and define the random set U := {U1, . . . , Un}. Let Z
be any {0, . . . , n − 1}-valued random variable that is independent of U .
There exists a measurable function h : [0, 1]{n} → [0, 1]{<n} such that
h(A) ⊂ A for all A, and

h(U)
d
= {U1, . . . , UZ}.

Proof. Define the random set Un−1 := {U1, . . . , Un−1}. Let V be uni-
formly distributed on [0, 1] and independent of (U1, . . . , Un−1). Since

Z < n, there exists a measurable ĥ : [0, 1]{n−1} × [0, 1] → [0, 1]{<n}

such that ĥ(Un−1, V )
d
= {U1, . . . , UZ} and ĥ(Un−1, V ) ⊆ Un−1; to con-

struct such an ĥ, use V to randomly order Un−1 and independently
construct Z with the correct distribution, and then select the first Z
points in the ordering. Now let g and v be as in Proposition 5, so that

(g(U), v(U))
d
= (Un−1, V ). Define h(U) := ĥ(g(U), v(U)). �

4. Couplings of Poisson Random Variables

In this section we will show that condition (ii) of Theorem 1 implies
the existence of a certain coupling of Poisson random variables that
will be used to construct thinnings.

We need the following simple result which implies that each of the
two families of curves in Figure 1 is non-intersecting.

Lemma 8 (Non-intersection). Let X, Y be Poisson random variables
with respective means λ, µ, where λ > µ. For every integer k ≥ 0,

(i) P
(
X = k + 1

)
≤ P

(
Y = k + 1

)
implies P

(
X = k

)
≤ P

(
Y = k

)
;

(ii) P
(
X ≤ k+1

)
≤ P

(
Y ≤ k

)
implies P

(
X ≤ k+2

)
≤ P

(
Y ≤ k+1

)
.

The following fact will be useful in the proof of Lemma 8, and else-
where. If X is a Poisson random variable with mean λ, then P(X ≤ n)
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is the probability that the (n+1)st arrival in a standard Poisson process
occurs after time λ, so

P(X ≤ n) =
1

n!

∫ ∞

λ

e−ttndt. (4)

Proof of Lemma 8. Let X, Y be Poisson with respective means λ, µ,
where λ > µ. Part (i) is easy to check:

P(X = k) = k+1
λ

P(X = k + 1)

≤ k+1
λ

P(Y = k + 1) = µ
λ

P(Y = k) < P(Y = k).

For (ii), using (4), the following inequalities are all equivalent:

P(X ≤ k + 1) ≤ P(Y ≤ k);

P(X ≤ k + 1) ≤ P(Y ≤ k + 1) − P(Y = k + 1);

1
(k+1)!

∫ ∞

λ

e−ttk+1 dt ≤ 1
(k+1)!

∫ ∞

µ

e−ttk+1 dt − 1
(k+1)!

e−µµk+1;

e−µµk+1 ≤

∫ λ

µ

e−ttk+1 dt;

1 ≤

∫ λ

µ

eµ−t
( t

µ

)k+1

dt.

But the right side of the last inequality is clearly increasing in k. �

Corollary 9 (Monotone coupling). If condition (ii) of Theorem 1 is
satisfied by Poisson random variables X and Y and an integer k, then
there exists a coupling of X and Y with the following properties.

(i) The coupling is monotone; that is X ≥ Y .
(ii) If X ≤ k, then X = Y .
(iii) If X > k, then X > Y .

Before proving Corollary 9 we recall that if W and V are real-valued
random variables then W stochastically dominates V if and only if
there exists a coupling of W and V such that W ≥ V a.s. See e.g. [12,
Chapter 1] and [11] for background.

Proof of Corollary 9. Let X and Y be Poisson random variables that
satisfy condition (ii) of Theorem 1 with some integer k. Applying
Lemma 8, we obtain that

P(X = j) ≤ P(Y = j) for all 0 ≤ j ≤ k (5)

and

P(X ≤ j + 1) ≤ P(Y ≤ j) for all j ≥ k. (6)
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By (5), we may define a probability mass function m on N as follows:

m(j) :=





P(Y = 0) − P(X = 0) + P(X ≤ k) j = 0;

P(Y = j) − P(X = j) 1 ≤ j ≤ k;

P(Y = j) j > k.

Let V be a random variable with mass function m. Also let W :=
(X − 1)1X>k. By (5) and (6), it is straightforward to check that W
stochastically dominates V , so we may assume that W ≥ V . On X ≤ k
we have W = 0 and therefore V = 0, hence we have the equality
V = V 1X>k. Now define a random variable

Y ′ := X1X≤k + V 1X>k.

The mass function of Y ′ is obtained by adding those of X1X≤k and V ,

except at 0, and it follows that Y ′ d
= Y . Therefore we may assume that

Y ′ = Y . On the other hand we may write

X = X1X≤k + (W + 1)1X>k.

By comparing the last two displays it is evident that the required prop-
erties (ii) and (iii) hold, and (i) is a consequence of them. �

5. The thinning, and proofs of corollaries

Proof of Theorem 1: (ii) =⇒ (i). Assuming condition (ii) we con-
struct a thinning f . Let k be an integer satisfying condition (ii).
Let Π be a Poisson point process on [0, 1] with intensity λ. Write
X = Π([0, 1]); thus X is a Poisson random variable with mean λ.
Let Y be a coupled Poisson random variable with mean µ so that X
and Y satisfy the conclusion of Corollary 9. We will define f so that

f(Π)([0, 1])
d
= Y .

For each n ≥ 0, let Qn be the law of Y conditional on X = n. Let Zn

be independent of Π and have law Qn. By Corollary 9, if n > k, then
Y < n a.s. For each n > k, let hn : [0, 1]{n} → [0, 1]{<n} be the function
from Corollary 7 corresponding to the random variable Zn. Let f be
defined by:

[f(Π)] :=

{
[Π] if X ≤ k;

hn([Π]) if X = n > k.

By Corollary 9, we have f(Π)([0, 1])
d
= Y . In addition, from Corol-

lary 7 we have that for all m ≥ 0, conditional on the event that
f(Π)([0, 1]) = m, the m points of f(Π) have the distribution of m
unordered i.i.d. random variables uniformly distributed on [0, 1] (this
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holds even if we condition also on Π([0, 1])). Thus f(Π) is a Poisson
point process of intensity µ on [0, 1]. �

Proof of Corollary 2. Let Fλ be the distribution function of a Poisson
random variable with mean λ. Part (i) follows immediately from The-
orem 1 condition (ii) and the facts that Fλ(k) is decreasing in λ for all
k ≥ 0 and that e−λλk/k! is unimodal as a function of λ.

Let (λ, µ) and (λ′, µ′) satisfy the conditions of Corollary 2 part (ii).
By Theorem 1 condition (ii), it suffices to show that if for some fixed
k ≥ 0, the pair (λ, µ) satisfies Fλ(k + 1) ≤ Fµ(k) and e−λλk ≤ e−µµk,
then pair (λ′, µ′) satisfies the same inequalities (with the same k). Let
p := µ/λ. By a variant of the argument in the proof of Lemma 8 (ii),
we have that Fλ(k + 1) ≤ Fµ(k) if and only if

e−λλk+1 ≤ (k + 1)

∫ λ

µ

e−ttkdt. (7)

By the change of variables, t = λs, we see that (7) is equivalent to

1 ≤ (k + 1)

∫ 1

p

e(1−s)λskds. (8)

The right side of (8) is increasing in λ. Since µ′/λ′ = p and λ′ > λ, we
have Fλ′(k+1) ≤ Fµ′(k). Simple calculations show that e−λλk ≤ e−µµk

if and only if

λ ≥
−k log p

1 − p
. (9)

The left side of (9) is obviously increasing in λ. Thus we have that
e−λ′

(λ′)k ≤ e−µ′

(µ′)k. �

For x ∈ R, let bxc denote its integer part.

Proof of Corollary 4. First we show that λc(µ) ≤ µ + 1. By Corol-
lary 2(i), it suffices to show that if λ = µ + 1, then there is a thinning
from λ to µ. By Theorem 1 condition (ii), we must show for some
k ∈ N that Fλ(k + 1) ≤ Fµ(k) and e−λλk ≤ e−µµk. The latter condi-
tion is satisfied by choosing k = b1/ log(1 + 1/µ)c. As in the proof of
Lemma 8(ii), Fλ(k + 1) ≤ Fµ(k) if and only if

∫ λ

µ

eµ−t
( t

µ

)k+1

dt ≥ 1. (10)

So by the change of variables t = µ + s and the equality λ = µ + 1, it
suffices to verify that

∫ 1

0

e−s
(
1 +

s

µ

)k+1

ds ≥ 1. (11)
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Inequality (11) is a consequence of the observation that

log(1 + s/µ)

log(1 + 1/µ)
≥ s for all s ∈ [0, 1],

which in turn follows from log(µ + s) ≥ (1− s) log µ + s log(µ + 1), an
instance of the concavity of log.

Next we show that λc(µ) ≥ µ + 1 − o(1). Fix δ < 1, and let λ =
µ + δ. By Theorem 1 condition (iii) it suffices to show that when µ is
sufficiently large there is an integer k so that Fλ(k + 1) > Fµ(k) and
e−λλk+1 > e−µµk+1. The latter condition is equivalent to the inequality

(
1 +

δ

µ

)k+1

> eδ, (12)

while the former condition is equivalent to the negation of (10); more-
over, by the change of variable t = µ + s this is equivalent to

∫ δ

0

e−s
(
1 +

s

µ

)k+1

ds < 1. (13)

Set k = bµ+1c. For µ sufficiently large, (12) is satisfied with this k.
Moreover, since k +1 < µ+2 and (1+ s/µ) < es/µ, we see that the left

side of (13) is bounded above by
∫ δ

0
e2s/µds, which is strictly less than

1 for µ sufficiently large. �

6. Variants and Open Problems

6.1. Thickening. Theorem 1 and its corollaries address deterministic
thinning, but what about deterministic thickening? Does there exist a
measurable function f such that if Π is a Poisson point process on a
Borel set S, then f(Π) ≥ Π and f(Π) is a Poisson point process on S
of intensity higher than that of the original process Π? If S has finite
volume, then the answer is no.

Proposition 10. Fix µ > λ > 0, and Borel set S ⊂ R
d with L(S) ∈

(0,∞). Let Π be a homogeneous Poisson process of intensity λ on
S. There does not exist a measurable function f such that f(Π) is a
homogeneous Poisson process of intensity strictly larger than λ on S.

Remark 3. In Proposition 10 we do not even require that f(Π) ≥ Π.

Proof of Proposition 10. Let f be a measurable function. Let 0 denote
the zero measure. If f(0) = 0 then P(f(Π) = 0) ≥ P(Π = 0) so
that f(Π)(S) cannot be a Poisson random variable of larger mean than
Π(S). If f(0) 6= 0 then P(f(Π) = f(0)) ≥ P(Π = 0) > 0 so that f(Π)
gives positive mass to a single point measure other than 0 and hence
can not be a Poisson process. �
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By the Borel isomorphism theorem, for any Borel set S of infinite
volume and any λ′ > 0, there exists a measurable function f such that
if Π is a Poisson process of positive intensity on S, then f(Π) is a
Poisson point process of intensity λ′ on S; but of course this does not
guarantee f(Π) ≥ Π. It is shown in [7, Theorem 3] that even in the case
of infinite volume, deterministic thickening is impossible if we impose
an additional finitariness condition on f . Gurel-Gurevich and Peled
[4] have informed us that they have recently proved that deterministic
thickening is possible if this condition is dropped.

6.2. Equivariant Thinning. As remarked earlier, Theorem 1 extends
immediately to any Borel space with a finite non-atomic measure.
When the space has non-trivial symmetries, new questions arise.

Consider the length measure on the circle S1 = {x ∈ R
2 : ‖x‖ = 1}.

Since this measure space is isomorphic to the interval [0, 2π] with
Lebesgue measure, Theorem 1 tells us for which pairs λ, µ there exists
a thinning. However the circle is more interesting because we can asso-
ciate groups of symmetries. Given an isometry θ of S1 and ν ∈ M(S1),
let θ(ν) be the measure given by θ(ν)(A) := ν(θ−1(A)) for measurable
A ⊆ S1. We say that a measurable mapping f : M(S1) → M(S1) is
rotation-equivariant if θ(f(ν)) = f(θ(ν)) for all ν ∈ M(S1) and all
rotations θ of S1. Isometry-equivariance is defined analogously.

Theorem 11. If S is the unit circle S1, and Lebesgue measure is re-
placed with uniform measure on S1, then Theorem 1 holds even with the
additional requirement that the thinning f in condition (i) be rotation-
equivariant.

Proof. The proof of Theorem 1 goes through except that we need
the following rotation-equivariant version of Proposition 5. Assuming
condition (ii), this allows the thinning we construct to be rotation-
equivariant. We omit the rest of the details. �

Proposition 12 (Equivariant deletion). Let U1, . . . , Un be i.i.d. ran-
dom variables uniformly distributed on S1, and define the random set
U := {U1, . . . , Un}. There exists a measurable function g : (S1){n} →
(S1){n−1}∪{∅}, with the following properties: g is rotation-equivariant,

g(A) ⊂ A for any set A, and g(U)
d
= {U1, . . . , Un−1}. In addition, there

exists a function v : (S1){n} → [0, 1], such that v is rotation-invariant,
and v(U) is uniformly distributed on [0, 1] and independent of g(U).

To construct this function we rely on a classical problem involving
fuel shortage, see e.g. [13, Gasoline Crisis]. See also Spitzer’s Lemma
[9, Theorem 2.1]. We repeat the problem and its solution below.
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Lemma 13. Suppose a circular road has several gas stations along its
length with just enough gas in total to drive a full circle around the
road. Then it is possible to start at one of the stations with an empty
tank and complete a circuit without running out of gas before the end.

Proof. Pretend at first we are allowed to have a negative amount of gas
and still drive. Start at any point and consider the amount of gas in the
car as a function of the location. After a full circle the tank is exactly
empty again. Any point at which the function takes its minimum is a
suitable starting point. �

Proof of Proposition 12. Place n gas stations at the points of U ⊂ S1

with gas for 1/n of the circle at each. Let z(U) be the station from
which it is possible to drive around S1 (in a counterclockwise direction);
if there is more than one such station, set z(U) = ∅ (this has probability
0 for i.i.d. uniform points). Clearly g(U) := U \ {z(U)} is rotation-
equivariant.

To see that g(U) has the claimed distribution, consider a set B ∈
(S1){n−1}, and let F (B) ⊂ S1 be the set of x ∈ S1 so that z(B∪{x}) =
x. By Lemma 6, it suffices to show that F (B) has measure 1/n for a.e.
B.

To see that F (B) has measure 1/n, consider as above the amount of
gas in the car (allowing a deficit) when 1/n gas is placed at each point
of B, but now continue driving indefinitely around the circle. The gas
function h(t) is skew-periodic: h(t + 1) = h(t) − 1/n. Furthermore, it
has derivative −1 except at points t (mod 1) ∈ B where h is discontin-
uous. It follows that there is a set T of measure 1/n so that h attains a
new minimum value at every t (mod 1) ∈ T . The set T is exactly the
set of locations where it is possible to drive a full circle starting with
1/n gas, hence these are the x where z(B ∪ {x}) = x. Note that T is
a finite union of intervals in S1.

We define v as follows. If z(U) = ∅, then set (arbitrarily) v(U) = 0;
otherwise, compute the set T corresponding to g(U). Given g(U), z(U)
is uniformly distributed on T . Take the component (interval) of T
containing z(U), rescale it to the interval [0, 1], and let v(U) be the
image of z(U) under this rescaling. �

Proposition 12 gives a deletion procedure that is equivariant to ro-
tations, but not to other isometries of the circle (namely, reflections).

Question 1. Give necessary and sufficient conditions on λ and µ for
the existence of an isometry-equivariant thinning on the circle S1 from
λ to µ.
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Remark 4. It is easy to see that the isometry-equivariant version of
Proposition 12 does not hold in the case n = 2. Therefore, if there exists
an isometry-equivariant thinning on S1, whenever there are exactly two
points, it must either keep both of them or delete both of them. Hence
the set of (λ, µ) for which there is an isometry-equivariant thinning on
S1 from λ to µ is strictly smaller than the set for which there is a
rotation-equivariant thinning. We do not know whether an isometry-
equivariant version of Proposition 12 holds in the case n ≥ 4. Ori
Gurel-Gurevich has found a construction in the case n = 3 (personal
communication).

Theorem 11 can be easily generalized to some other symmetric mea-
sure spaces, by using only Proposition 12. For example, the 2-sphere
S2 = {x ∈ R

3 : ‖x‖ = 1} with the group of rotations that fix a given di-
ameter, or the torus R

2/Z
2 with translations. However, we do not know

whether there exists a rotation-equivariant thinning on the sphere, or
an isometry-equivariant thinning on the torus.

Question 2. Give necessary and sufficient conditions on λ and µ for
the existence of an rotation-equivariant (or isometry-equivariant) thin-
ning from λ to µ on the 2-sphere S2.

Similar questions about thinning can be asked in a more general set-
ting. Let G be a group of measure-preserving bijections on a standard
Borel space S and let M(S) be the space of simple point measures on
S. We say that f : M(S) → M(S) is G-equivariant if f(γν) = γf(ν)
for all ν ∈ M(S) and all γ ∈ G.

For the unit ball it is not difficult to show that an isometry-
equivariant version of Proposition 5 holds. Indeed, since isometries
of the ball preserve the norm, any selection scheme that depends only
on the norms of the points will automatically be isometry-equivariant.
The function x 7→ ‖x‖d maps a uniformly distributed random variable
on the unit ball to a uniformly distributed random variable on [0, 1],
and any thinning procedure on [0, 1] can be composed on this mapping.
Thus for the unit ball, Theorem 1 holds even with the additional re-
quirement that the thinning f in condition (i) be isometry-equivariant.

Question 3. For which spaces (S, G) is the existence of a thinning
from λ to µ equivalent to the existence of a G-equivariant thinning
from λ to µ? As seen above, this property holds for S1 with rotations
(Theorem 11), and for the ball with isometries, but not for S1 with
isometries (Remark 4).

6.3. Splitting. We say that a deterministic thinning f on [0, 1] from λ
to µ is a (λ, µ)-splitting if f(Π) and Π−f(Π) are both Poisson point
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processes on [0, 1], with respective intensities µ and λ− µ respectively.
The existence of a (λ, µ)-splitting implies but is not equivalent to the
existence of both a thinning from λ to µ and a thinning from λ to λ−µ.

Question 4. Give necessary and sufficient conditions on (λ, µ) for the
existence of a (λ, µ)-splitting.
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