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Abstract. Let X1, X2, . . . be independent identically distributed
nonnegative random variables. Wald’s identity states that the ran-
dom sum ST := X1 + · · ·+ XT has expectation ET ·EX1 provided
T is a stopping time. We prove here that for any 1 < α ≤ 2, if
T is an arbitrary nonnegative random variable, then ST has finite
expectation provided that X1 has finite α-moment and T has finite
1/(α− 1)-moment. We also prove a variant in which T is assumed
to have a finite exponential moment. These moment conditions are
sharp in the sense that for any i.i.d. sequence Xi violating them,
there is a T satisfying the given condition for which ST (and, in
fact, XT ) has infinite expectation.

An interpretation of this is given in terms of a prophet being
more rewarded than a gambler when a certain impatience restric-
tion is imposed.

1. Introduction

Let X1, X2, . . . be independent identically distributed (i.i.d.) non-
negative random variables, and let T be a nonnegative integer-valued
random variable. Write Sn =

∑n
i=1Xi and X = X1. Wald’s identity

[11] states that if T is a stopping time (which is to say that for each n,
the event {T = n} lies in the σ-field generated by X1, . . . , Xn), then

(1) EST = ET · EX.
In particular, if X and T have finite mean then so does ST .

It is natural to ask whether similar conclusions can be obtained if
we drop the requirement that T be a stopping time. It is too much to
hope that the equality (1) still holds. (For example, suppose that Xi

takes values 0, 1 with equal probabilities, and let T be 1 if X2 = 0 and
otherwise 2. Then EST = 1 6= 3

2
· 1

2
= ET · EX.) However, one may

still ask when ST has finite mean. It turns out that finite means of X
and T no longer suffice, but stronger moment conditions do. Our main
result gives sharp moment conditions for this conclusion to hold. In
addition, when the moment conditions fail, with a suitably chosen T we
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can arrange that even the final summand XT has infinite mean. Here
is the precise statement. (If T = 0 we take by convention XT = 0).

Theorem 1. Let X1, X2, . . . be i.i.d. nonnegative random variables,
and write Sn :=

∑n
i=1Xi and X = X1. For each α ∈ (1, 2], the

following are equivalent.

(i) EXα <∞.
(ii) For every nonnegative integer-valued random variable T satis-

fying ET 1/(α−1) <∞, we have EST <∞.
(iii) For every nonnegative integer-valued random variable T satis-

fying ET 1/(α−1) <∞, we have EXT <∞.

The special case α = 2 of Theorem 1 is particularly natural: then the
condition on X in (i) is that it have finite variance, and the condition
on T in (ii) and (iii) is that it have finite mean. At the other extreme,
as α ↓ 1, (ii) and (iii) require successively higher moments of T to be
finite. One may ask what happens when T satisfies an even stronger
condition such as a finite exponential moment – what condition must
we impose on X, if we are to conclude EST < ∞? The following
provides an answer, in which, moreover, the independence assumption
may be relaxed.

Theorem 2. Let X1, X2, . . . be i.i.d. nonnegative random variables,
and write Sn :=

∑n
i=1Xi and X = X1. The following are equivalent.

(i) E[X(logX)+] <∞.
(ii) For every nonnegative integer-valued random variable T satis-

fying EecT <∞ for some c > 0, we have EST <∞.
(iii) For every nonnegative integer-valued random variable T satis-

fying EecT <∞ for some c > 0, we have EXT <∞.

Moreover, if X1, X2, . . . are assumed identically distributed but not nec-
essarily independent, then (i) and (ii) are equivalent.

On the other hand, in the following variant of Theorem 1, dropping
independence results in a different moment condition for T .

Proposition 3. Let X be a nonnegative random variable. For each
α ∈ (1, 2], the following are equivalent.

(i) EXα <∞.
(ii) For every nonnegative integer valued random variable T sat-

isfying ETα/(α−1) < ∞, and for any X1, X2, . . . identically
distributed with X (but not necessarily independent), we have
EST <∞.

In order to prove the implications (iii) ⇒ (i) of Theorems 1 and
2, we will assume that (i) fails, and construct a suitable T for which
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EXT = ∞ (and thus also EST = ∞). This T will be the last time the
random sequence is in a certain (time-dependent) deterministic set, i.e.

T := max{n : Xn ∈ Bn}

for a suitable sequence of sets Bn. It is interesting to note that, in
contrast, no T of the form min{n : Xn ∈ Bn} could work for this
purpose, since such a T is a stopping time, so Wald’s identity applies.
In the context of Theorem 2, T will take the form

T := max{n : Xn ≥ f(n)}

for a suitable function f .
The results here bear an interesting relation to so-called prophet

inequalities; see [4] for a survey. A central prophet inequality (see [8])
states that if X1, X2, . . . are independent (not necessarily identically
distributed) nonnegative random variables then

(2) sup
U∈U

EXU ≤ 2 sup
S∈S

EXS,

where U denotes the set of all positive integer-valued random variables
and S denotes the set of all stopping times. The left side is of course
equal to E supiXi. The factor 2 is sharp. The interpretation is that
a prophet and a gambler are presented sequentially with the values
X1, X2, . . ., and each can stop at any time k and then receive pay-
ment Xk. The prophet sees the entire sequence in advance and so can
obtain the left side of (2) in expectation, while the gambler can only
achieve the supremum on the right. Thus (2) states that the prophet’s
advantage is at most a factor of 2.

The inequality (2) is uninteresting when (Xi) is an infinite i.i.d. se-
quence, but for example applying it to Xi1[i ≤ n] (where n is fixed and
(Xi) are i.i.d.) gives

(3) sup
U∈U :
U≤n

EXU ≤ 2 sup
S∈S:
S≤n

EXS,

(and the factor of 2 is again sharp). How does this result change if we
replace the condition that U and S are bounded by n with a moment
restriction? It turns out that the prophet’s advantage can become
infinite, in the following sense. Let X1, X2, . . . be any i.i.d. nonnegative
random variables with mean 1 and infinite variance. By Theorem 1,
there exists an integer-valued random variable T so that µ := ET <∞
but EXT = ∞. Then we have

sup
U∈U :
EU≤µ

EXU = ∞; sup
S∈S:
ES≤µ

EXS ≤ µ.
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Here the first claim follows by taking U = T and the second claim
follows from Wald’s identity.

Interpreting impatience as meaning that the time we stop at has a
mean of at most µ, we see that this impatience hurts the gambler much
more than the prophet.

Our proof of the implication (i) ⇒ (ii) in Theorem 1 will rely on
a concentration inequality which is due to Hsu and Robbins [5] for
the important special case α = 2, and a generalization due to Katz
[7] for α < 2. For expository reasons, we include a proof of the Hsu-
Robbins inequality, which is simpler than the original proof, and is an
adaptation of that given in [2]. Thus, we give a complete proof from
first principles of Theorem 1 in the case α = 2. Erdős [3] proved a
converse of the Hsu-Robbins result; we will also obtain this converse in
the case of nonnegative random variables as a corollary of our results.

Throughout the article we will write X = X1 and Sn :=
∑n

i=1Xi. If
T = 0 then we take XT = 0 and ST = 0.

2. The case of exponential tails

In this section we give the proof of Theorem 2, which is relatively
straightforward. We start with a simple lemma relating XT and ST

for T of the form that we will use for our counterexamples. The same
lemma will be used in the proof of Theorem 1.

Lemma 4. Let X1, X2, . . . be i.i.d. nonnegative random variables. Let
T be defined by

T = max{k : Xk ∈ Bk}
for some sequence of sets Bk for which this set is a.s. finite, and where
we take T = 0 and XT = 0 when the set is empty. Then

EST = E[(T − 1)+] · EX + EXT .

Proof. Observe that 1[T = k] and Sk−1 are independent for every k ≥ 1.
Therefore,

EST = E
∞∑

k=1

Sk1[T = k]

= E
∞∑

k=1

(Sk−1 +Xk)1[T = k]

=
∞∑

k=1

ESk−1 · P(T = k) + E
∞∑

k=1

Xk1[T = k]

= E[(T − 1)+] · EX + EXT . �
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Proof of Theorem 2. We first prove that (i) and (ii) are equivalent, as-
suming only that the Xi are identically distributed (not necessarily
independent).

Assume that (i) holds, i.e. E[X(logX)+] <∞, and that T is a non-
negative integer-valued random variable satisfying EecT <∞. Observe
that Xk ≤ eck +Xk1[Xk > eck], so

ST ≤
T∑

k=1

eck +
T∑

k=1

Xk1[Xk ≥ eck].

The first sum equals

ec(ecT − 1)

ec − 1
which has finite expectation. The expectation of the second sum is at
most
∞∑

k=1

E
(
X1[X ≥ eck]

)
= E

∞∑
k=1

X1[X ≥ eck] = E
(
X

⌊(logX)+

c

⌋)
<∞.

Hence EST <∞ as required, giving (ii).
Now assume that (i) fails, i.e. E[X(logX)+] = ∞, but (ii) holds (still

without assuming independence of the Xi). Taking T ≡ 1 in (ii) shows
that EX <∞. Now let

(4) T := max{k ≥ 1 : Xk ≥ ek},

where T is taken to be 0 if the set above is empty and ∞ if it is
unbounded. Then

P(T ≥ k) ≤
∞∑

i=k

P(Xi ≥ ei) ≤
∞∑

i=k

EX
ei

by Markov’s inequality. The last sum is (EX)e1−k/(e − 1), and hence
Eeck <∞ for suitable c > 0 (and in particular T is a.s. finite). On the
other hand,

EST = E
∞∑

k=1

Xk1[k ≤ T ] ≥ E
∞∑

k=1

X1[X ≥ ek] = E
(
Xb(logX)+c

)
,

which is infinite, contradicting (ii).
Now assume that the Xi are i.i.d. We have already established that

(i) and (ii) are equivalent, and (ii) immediately implies (iii) since ST ≥
XT . It therefore suffices to show that (iii) implies (i). Suppose (i) fails
and (iii) holds. Taking T ≡ 1 in (iii) shows that EX < ∞. Now take
the same T as in (4). As argued above, EST = ∞ and EecT < ∞
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for some c > 0 (so ET < ∞). Hence (iii) gives EXT < ∞. But this
contradicts Lemma 4. �

Remark Conditions (i) and (iii) cannot be equivalent if the i.i.d.
condition is dropped since if X1 = X2 = X3 = . . ., then XT = X1 for
every T and so (iii) just corresponds to X having a first moment.

3. The case α = 2 and the Hsu-Robbins Theorem

In this section we prove Theorem 1 in the important special case
α = 2 (so 1/(α − 1) = 1). We will use the following result of Hsu and
Robbins [5]. For expository purposes we include a proof of this result,
which is simpler than the original proof, and is based on an argument
from [2].

Theorem 5 (Hsu and Robbins). Let X1, X2, . . . be i.i.d. random vari-
ables with finite mean µ and finite variance. Then for all ε > 0,

∞∑
n=1

P
(
|Sn − nµ| ≥ nε

)
<∞.

Proof. We may assume without loss of generality that µ = 0 and EX2 =
1. Let X∗

n := max{X1, . . . , Xn} and S∗n := max{S1, . . . , Sn}. Observe
that for any h > 0, the stopping time τh := min {k : Sk ≥ h} satisfies

(5)

P(Sn > 3h, X∗
n ≤ h)

≤ P(τh < n, Sτh
≤ 2h) P(Sn > 3h | τh < n, Sτh

≤ 2h)

≤ P(τh ≤ n)2

where the last step used the strong Markov property at time τh. Now
Kolmogorov’s maximum inequality (see e.g. [6, Lemma 4.15]) implies
that

P(τh ≤ n) = P(S∗n ≥ h) ≤ ES2
n

h2
=

n

h2
.

Applying this with h = εn/3 we infer from (5) that

P
(
Sn > nε, X∗

n ≤
εn

3

)
≤ 81

ε4n2
.

Moreover, we have

P
(
X∗

n >
εn

3

)
≤ nP

(
X1 >

εn

3

)
.

Combining the last two inequalities give

P(Sn > nε) ≤ 81

ε4n2
+ nP

(
X1 >

εn

3

)
.
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The first term on the right is summable in n, and the second term
is summable by the assumption of finite variance. Applying the same
argument to −Sn completes the proof. �

We will also a need a simple fact of real analysis, a converse to
Hölder’s inequality, which we state in a probabilistic form. See, e.g.,
Lemma 6.7 in [9] for a related statement. The proof method is known
as the “gliding hump”; see [10] and the references therein.

Lemma 6. Let p, q > 1 satisfy 1/p+ 1/q = 1. Assume that a nonneg-
ative random variable X satisfies EXg(X) <∞ for every nonnegative
function g that satisfies Egq(X) <∞. Then EXp <∞.

Proof. Assume EXp = ∞. Letting ψk := P(bXc = k), we have∑∞
k=1 ψkk

p = EbXcp = ∞, so we can choose integers 0 = a0 < a1 <
a2, . . . such that for each ` ≥ 1,

S` :=
∑

k∈[a`−1,a`)

ψkk
p ≥ 1.

Denote the interval [a`−1, a`) by I` and let g be defined on [0,∞) by

g(x) :=
bxcp−1

`S`

for x ∈ I`.

Since (p− 1)q = p, we obtain

Egq(X) =
∞∑

`=1

∑
k∈I`

ψk
kp

`qSq
`

=
∞∑

`=1

1

`qSq−1
`

<∞.

On the other hand

EXg(X) ≥
∞∑

`=1

∑
k∈I`

ψk
kp

`S`

=
∞∑

`=1

1

`
= ∞. �

We can now proceed with the main proof.

Proof of Theorem 1, case α = 2. We will first show that (i) and (ii)
are equivalent. Assume (i) holds, i.e. EX2 < ∞, and let T satisfy
ET <∞. We may assume without loss of generality that EX = 1. By
the nonnegativity of the Xi, we have

(6) P(ST ≥ 2n) ≤ P(T ≥ n) + P(Sn ≥ 2n).

Since ET < ∞, the first term on the right is summable in n. Since
EX2 <∞ and EX = 1, Theorem 5 with ε = 1 implies that the second
term is also summable. We conclude that EST <∞.

Now assume (ii). To show that X has finite second moment, using
Lemma 6 with p = q = 1, we need only show that for any nonnegative
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function g satisfying Eg2(X) <∞, we have EXg(X) <∞. Given such
a g, consider the integer valued random variable

(7) Tg := max{k ≥ 1 : g(Xk) ≥ k},

where Tg is taken to be 0 if the set is empty or ∞ is it is unbounded.
We have

ETg =
∞∑

k=1

P(Tg ≥ k) ≤
∞∑

k=1

∞∑
`=k

P(g(X`) ≥ `) =
∞∑

`=1

` P(g(X) ≥ `).

Since Eg2(X) < ∞, the last expression is finite, and hence ETg < ∞.
Thus, by assumption (ii), we have ESTg <∞. However

(8)

ESTg = E
∞∑

k=1

Xk1[k ≤ Tg] ≥ E
∞∑

k=1

Xk1[g(Xk) ≥ k]

= E
∞∑

k=1

X1[g(X) ≥ k] ≥ EXbg(X)c,

so that EXbg(X)c <∞, which easily yields EXg(X) <∞ as required.
Clearly (ii) implies (iii). Finally, we proceed as in the proof of Theo-

rem 2 to show (iii) implies (i). Suppose (i) fails and (iii) holds. Taking
T ≡ 1 in (iii) shows that EX < ∞. Since EX2 = ∞, Lemma 6 im-
plies the existence of a g with Eg2(X) < ∞ but EXg(X) = ∞. Let
Tg be defined as in (7) above, for this g. The argument above shows
that ESTg = ∞ while ETg < ∞, and so the assumption (iii) gives
EXTg <∞. However this contradicts Lemma 4. �

We also obtain the following converse of the Hsu-Robbins Theorem
due to Erdős.

Corollary 7. Let X1, X2, . . . be i.i.d. nonnegative random variables
with finite mean µ. Write Sn =

∑n
i=1Xi and X = X1. If, for all

ε > 0,
∞∑

n=1

P(|Sn − nµ| ≥ nε) <∞,

then X has a finite variance.

Proof. Without loss of generality, we can assume that µ = 1. By
Theorem 1 with α = 2, it suffices to show that EST <∞ for all T with
finite mean. However, this is immediate from (6) – the first term on
the right is summable since T has finite mean, and the second term is
summable by the assumption of the corollary with ε = 1. �
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4. The case of α < 2

The proof of Theorem 1 in the general case follows very closely the
proof for α = 2. We need the follow replacement of Theorem 5 due to
Katz [7], whose proof we do not give here. A converse of the results in
[7] appears in [1]. We will also use the general case of Lemma 6.

Theorem 8 (Katz). Let X1, X2, . . . be i.i.d. random variables satisfying
E|X1|t <∞ with t ≥ 1. If r > t, then, for all ε > 0,

∞∑
n=1

nr−2P
(
|Sn| ≥ nr/tε

)
<∞.

Proof of Theorem 1, case α < 2. We first prove that (i) implies (ii).
Assume that EXα < ∞, and T is an integer valued random variable
with ET 1/(α−1) <∞. Observe that

(9) P(ST ≥ n) ≤ P
(
T ≥ dnα−1e

)
+ P

(
Sdnα−1e ≥ n

)
.

Since P(T ≥ dnα−1e) ≤ P(T 1/(α−1) ≥ n), the first term on the right is
summable. For the second, we have

∞∑
n=1

P
(
Sdnα−1e ≥ n

)
≤

∞∑
k=1

∑
n≥1:

dnα−1e=k

P(Sk ≥ n)

≤
∞∑

k=1

∑
n≥1:

dnα−1e=k

P
(
Sk ≥ (k − 1)

1
α−1

)
since dnα−1e = k implies that n ≥ (k − 1)1/(α−1). It is easy to check
that there exists Cα such that for all k ≥ 1,

#{n : dnα−1e = k} ≤ Cαk
2−α
α−1 .

Hence the last double sum is at most

Cα

∞∑
k=1

k
2−α
α−1 P

(
Sk ≥ (k − 1)

1
α−1

)
.

Now using Theorem 8 with t = α and r = α/(α − 1) and ε = 1
2

(and

noting that k1/(α−1)/2 ≤ (k−1)1/(α−1) for large enough k), we conclude
that the above expression is finite. Hence EST <∞, as required.

Next we show that (ii) implies (i). To show that X has a finite α-
moment, using Lemma 6, it suffices to show that for any nonnegative
function g satisfying Egα/(α−1)(X) <∞, we have EXg(X) <∞. Given
such a g, consider as before the integer valued random variable

Tg := max{k ≥ 1 : g(Xk) ≥ k},
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where Tg is taken to be 0 if the set in empty or ∞ if it is unbounded.
Observe that

∞∑
k=1

k
2−α
α−1 P(Tg ≥ k) ≤

∞∑
k=1

k
2−α
α−1

∞∑
`=k

P(g(X`) ≥ `)

≤
∞∑

`=1

`
1

α−1 P(g(X) ≥ `).

If Egα/(α−1)(X) <∞ then the last sum is finite and hence ET 1/(α−1)
g <

∞. By assumption (ii) we have ESTg <∞. However, as argued in (8),
ESTg ≥ EXbg(X)c. Therefore EXbg(X)c < ∞, so EXg(X) < ∞ as
required.

Clearly (ii) implies (iii). Finally, suppose (i) fails and (iii) holds.
Taking T ≡ 1 in (iii) shows that EX <∞. Since EXα = ∞, Lemma 6
implies the existence of a g with Egα/(α−1)(X) <∞ but EXg(X) = ∞.
Then, as before, Tg as defined above gives a contradiction to Lemma 4.

�

5. The dependent case

Proof of Proposition 3. Assume (i) holds. If ETα/(α−1) <∞ andX1, X2, . . .
are as in (ii), then we can write

ST ≤
T∑

k=1

k
1

α−1 +
T∑

k=1

Xk1
[
Xk ≥ k

1
α−1

]
.

The first sum is at most Tα/(α−1) which has finite expectation. The
expectation of the second sum is at most

E
∞∑

k=1

X1[X ≥ k
1

α−1 ] ≤ E(XXα−1) = EXα <∞.

Hence EST <∞, as claimed in (ii).
Now assume (ii) holds. To show that X has finite α-moment, using

Lemma 6, it is enough to show that for any nonnegative g satisfying
Egα/(α−1)(X) < ∞, we have EXg(X) < ∞. It is easily seen that it
suffices to only consider g that are integer valued. Given such a g, let
T be g(X) and let all the Xi be equal to X. Then ETα/(α−1) < ∞.
By (ii), EST <∞. However, by construction ST = Xg(X), concluding
the proof. �
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